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Abstract 

The work we will present in this paper is part of a dictionary project at the 
Berlin-Brandenburg Academy of Sciences and Humanities. For a large number of headwords, 
example sentences for their respective lexicographic descriptions have to be retrieved from a 
corpus of contemporary German. Lexicographers are typically faced with a huge number of 
corpus citations. Therefore, a tool that selects only good examples (those which are considered 
for inclusion into the dictionary) and dismisses the other ones would be time and effort 
effective. A rule-based good-example extractor proved to offer a good starting point, but the 
tool still delivers too many inacceptable citations. We have therefore tried to combine this tool 
with a machine learner that is trained on the decisions of an experienced lexicographer. The 
learner has been optimized to reject a large share of the example sentences. We present the 
machine learning results on a test data set with various combinations of linguistic features and 
quantify the gain in time and effort for the lexicographers. We also discuss the shortcomings of 
our approach and suggest some measures to counter them. 
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1. Introduction and motivation 

The work that will be reported in this paper originates from a large dictionary project 
at the Berlin-Brandenburg Academy of Sciences and Humanities (BBAW). The task is 
to update a legacy dictionary of contemporary German (Klein & Geyken, 2010). 
Approximately 45,000 lexical units that have become part of the German vocabulary 
during the last 40 years have to be registered and handled lexicographically (cf. 
Geyken & Lemnitzer, 2012). One of the principles of the work is to illustrate the 
lexicographical description, in particular concerning the meanings and usages of lexical 
items, with citations from a large German corpus.  

The underlying corpus has been built and continually extended at the BBAW (cf. 
Geyken, 2007). A large share of it can be consulted and queried through a search 
engine on the website of the project (www.dwds.de). The corpus currently contains 
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approximately 3 billion tokens. The sampling of new headwords from this corpus was 
mainly frequency based – most of the new headwords occur in these corpora with a 
frequency of >0.3 ppm (cf. Geyken & Lemnitzer, 2012); in absolute numbers: at least 
one thousand times. It is therefore impossible for a team of currently six 
lexicographers to read and check all these citations and to select the best three to five 
of them for inclusion in the dictionary article. Other straightforward alternatives such 
as sampling of k examples out of n, or just the first k examples, would not be satisfying 
either. Too many interesting contexts would escape the lexicographers’ attention just 
because these citations occur further down the list. It has therefore been decided early 
in the project to work with a “good example extractor”. The number of citations is 
parametrizable, i.e. the tool delivers for a headword those n citations that are ranked 
highest according to some qualitative criteria (see section 3 for further details). In the 
course of the lexicographical work – several hundred entries have currently been edited 
with the help of this tool – it was revealed that the selection of citations offered by this 
tool is still far from optimal. In particular, the number of “false positives”, i.e. 
citations which are ranked high but are rejected by the lexicographers, is still far too 
high. As little of the lexicographers’ work as possible should be wasted by checking 
bad corpus citations. To achieve this goal, it has been decided to post-process the 
output of the good-example extractor by a machine learning approach. The applied 
method should ideally learn lexicographical quality criteria and thus reduce the 
number of examples to those which are most likely to be considered by them for 
inclusion in the dictionary article. 

In this paper we will report first results of this approach, i.e. of combining a rule-based 
good-example extractor with a machine learning component into a processing pipeline. 
In section 2, we will give an overview of related wok. In section 3 we will briefly outline 
the operation mode of the rule-based extractor. In section 4 we will characterize the 
data we use for our machine learning experiments. Section 5 will be devoted to a 
description of our machine leaning approach. The results of the experiments will be 
presented in section 6. We will end with a conclusion and an outline of our further 
work. 

2. Related Work 

Activities in the field of good-example extraction are comparatively recent. Of course 
discussion among lexicographers regarding what counts as good examples and for 
which purposes have been taking place for a long time. See, for example, Harras (1989) 
who mentions a list of linguistic criteria that a good lexicographic example should 
meet. Many of the introductions into (practical) lexicography, e.g. Svensén (2004: 
281ff.), Atkins & Rundell (2008: 452ff.) and Engelberg & Lemnitzer (2009: 235ff.) 
devote at least a section to the function and quality of citations and other examples. 
However, only the advent of very large corpora that provide large numbers of citations 
made a (semi-)automatic pre-selection of material necessary. The seminal work in this 
field is that of Adam Kilgarriff and colleagues (Kilgarriff et al., 2008). They present a 
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rule-based approach to extracting good examples on the basis of some 
operationalisable quality criteria. The good example extractor implemented at the 
BBAW largely follows the approach presented in their paper (see section 3 and 
Didakowski et al., 2012). However, bringing ML methods into the field of automatic 
Gdex has recently become more impactful (cf. Rundell, 2014). In February 2015, a 
workshop of the “European Network of e-Lexicography was devoted exclusively to this 
topic (http://www.elexicography.eu/working-groups/working-group-3/wg3-workshops 
/automatic-extraction-of-good-dictionary-examples). On this occasion researchers 
from several European dictionary projects presented their work on that topic. To the 
best of our knowledge none of the work presented there has been published so far (but 
cf. Kosem et al., 2011 and Volodina et al., 2012). However, from the slides that are 
available on the website it can be deduced that some of the projects involve machine 
learning methods and tools in order to improve the precision of the extraction task. 

3. Combining machine-learning with a rule-based approach 

In Didakowski et al. (2012) we presented a good-example extractor that serves the 
lexicographers at the DWDS project by reducing the number of citations to be 
inspected. The extractor provides only those citations for a headword which are 
classified as most suitable with regards to a set of predefined rules. The extractor 
implements hard and soft rules which work on sentence level and global rules which 
work on a set of citations. The violation of a hard rule leads to immediate rejection of 
a citation. An example of such a rule is that a citation must be within a predefined 
range for sentence length. On the other hand, soft rules are used to rank the remaining 
citations by score. If a citation does not meet a soft rule it receives a lower score than 
a citation which does. A typical soft rule is that a citation should contain as few free 
pronouns as possible (for further details, cf. Didakowski et al., 2012). Additionally, the 
set of citations which is presented to the lexicographers should be well distributed 
among several text types (newspapers, novels, scientific prose, etc.) as well as over 
time – the dictionary should cover the period between 1900 and the present. For this 
purpose, global rules are applied to the ranked citation set making use of bibliographic 
metadata. In this connection the extractor is parametrizable – the users can decide 
how many citations are presented to them. The motivation behind using such a tool is 
not only to save time and effort for the lexicographers – who have more important 
things to do than reading hundreds of nearly identical and mostly uninteresting 
citations – but also to provide them with a “starter set” of typical usage types from 
which they should be able to construct the various senses of the headword. 
Furthermore, for the dictionary user the examples should be comprehensible without 
further context. 

In the course of the work with that tool it became evident that 15 to 20 examples serve 
as a good material basis for the lexicographers to obtain an overview of the various 
uses of most of the lexical items. It also arose that the ratio of good to bad examples 
was less than optimal. Lexicographers are still confronted with too many examples 

http://www.elexicography.eu/working-groups/working-group-3/wg3-workshops�


24 
 

which they dismiss for various reasons. For example, many of the dismissed examples a) 
are structurally too complex to be exposed to the dictionary user; b) contain still too 
many pronouns and are therefore hard to comprehend without further context; c) are 
structurally incomplete even if the parser provides a “complete” analysis (list items are 
typical examples of such incomplete structures) or d) contain spelling or slight 
grammatical errors. It could thus offer a considerable saving of time (and money) if 
the lexicographers are provided with a smaller and better sample of citations. Such a 
task, however, is beyond the capabilities of a rule-based extractor that has to balance 
internal features, such as linguistic information, and external features, such as the 
temporal and topical distribution of the citations. For such reasons the idea arose to 
apply a machine learner to the output of the rule-based example extractor. The learner 
should be trained on the examples which have been already classified as either 
appropriate or not appropriate for inclusion into a dictionary article. In the future, the 
machine learning component should ideally reduce the inappropriate examples and 
keep the appropriate ones. In the following section we describe the data used for the 
training and testing of the learner. 

4. The data 

From the list of headwords that are to be included in the updated dictionary, we 
selected approximately 1,050 headwords. For each of these headwords, the good 
example extractor provided 18 examples at most – for some of the headwords only a 
smaller number of good examples were available. This totaled approximately 13,200 
examples. All examples that had passed the rule-based good-example extractor were 
classified by one of the authors, a trained and experienced lexicographer, into one of 
two classes: (1) appropriate for inclusion, and (2) not appropriate for inclusion. These 
classified examples are used as training and test data for the machine learning task. 
The numbers in the data set are as follows: 5,984 have been labeled as appropriate (= 
class 1, “good”); 7,328 examples as not appropriate (= class 2, “bad”). 

For the machine learning experiment, the set of classified examples was split into two, 
half for training and half for testing. Assignment to one of the two groups was done 
randomly. The distribution of good and bad examples over the two sets is shown in 
Table 1. 

 Quality Dataset Good (= class 1) Bad (= class 2) 

Training set 3,607 3,011 

Test set 2,377 4,317 

Sum total 5,984 7,328 

Table 1: Distribution of examples between the training and test sets. 
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Due to the random sampling, the distribution of class 1 and class 2 examples varies in 
the training and test sets. However, this difference in distribution does not affect the 
performance of the machine leaning component. 

5. The machine-learning approach 

Our goal is to further refine the output of the good-example extractor from 
Didakowski et al. (2012) by combining it with a machine learning approach. We use 
Support Vector Machines (SVM, cf. Joachims, 1998) to “learn” which classifiers should 
be able to separate the good examples from the bad ones. The SVM learns a non-linear 
decision function that maps a set of features extracted from the example citations to a 
binary variable. We use several distinct representations of the texts in order to extract 
these features. In particular, we use a bag-of-words representation that encodes 
frequencies of words in the texts, parts-of-speech representations that assign word 
classes to the text tokens, and parse trees that encode syntactic structures. The text of 
each example is transformed into a sequence of these elements according to the 
different representations: for bag-of-words, the text is represented as sequence of words, 
for part-of-speech, the text is represented as sequence of the morpho-syntactic classes 
of the words; for parse trees, we represent the texts as sequences of trees in bracket 
notation.  

For example, the text “I went to Lancaster” is represented as follows. For bag-of-words 
representation we receive “I went to Lancaster”; for part-of-speech we get “PP VVD 
TO NP”; and for the parse tree we are given 
“(S(NP-SBJ(PRD),VP(VVD,PP(TO,NP(NNP)))))”. 

Sub-string kernels as proposed by Vishwanathan & Smola (2004) are used to calculate 
the similarity between examples based on common subsequences in the corresponding 
representations. All subsequences are used as features, i.e. all of the resulting 
substrings, sub-trees of the parse trees and sequences of part-of-speech tags. For 
instance, one feature of the above text “I went to Lancaster” in its part-of-speech 
representation is how many times the two labels “PR” and “VP” co-occur. Similarities 
between texts are encoded in a so-called kernel matrix that is used for the SVM. The 
entries in this matrix can be considered as indicators of the similarity of two texts 
based on the number of shared features, hence common sub-strings, common 
sub-graphs in the parse trees or common subsequences of parts-of-speech. Using the 
kernel matrix, we are able to train the SVM even on large feature sets, since we need 
only to calculate common subsequences instead of enumerating all possible 
subsequences of our texts in the corresponding representations. Further details on 
kernel methods can be found in Hoffmann et al. (2007). 

We implemented our method in Java as Plugin in RapidMiner (Mierswa, 2009), a state 
of the art Data Mining tool. The bag-of-words representation was built by 
transforming the tokens of the example texts into normalized words (‘lemmas’). The 
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parts-of-speech and the parse trees were assigned to the texts by the Stanford Parser 
with a grammar for German (cf. Rafferty et al., 2008). The SVM was learned using the 
LibSVM library (cf. Chang et al., 2011) which is available in the RapidMiner software. 
The calculation of the kernel matrix was also implemented in Java as Plugin for 
RapidMiner. The individual kernel entries were calculated following Vishwanathan & 
Smola (2004). The implementation uses efficient data structures and hashing 
mechanisms that facilitate and therefore speed up the calculations. Thus we are able 
to calculate the kernel matrix for large data sets of many long text examples. 

6. Results 

The machine learner would be perfect if it would sort out (and remove) all examples 
from the test set which have been hand-labeled as not appropriate by the human 
annotator and, on the other hand, accept all examples which have been labeled as 
appropriate. We know that this is impossible. First, the decisions of the human 
annotator are arbitrary to some degree and cannot be predicted by even the best 
machine learner. Second, the training and test set may differ in many regards. 
Therefore, we can imagine the optimal result as either of the two following strategies: a) 
the learner tries to keep as many good (= class 1) examples as possible, at the price of 
also keeping (too) many of the bad (= class 2) examples. In other words, the learner 
will be optimized for a lower precision and a higher recall. That would be a 
conservative approach (i.e. one that conserves many examples for further inspection by 
the lexicographers); b) the learner tries to remove as many bad examples as possible, 
at the price of removing (too) many good examples along the way. In other words, the 
learner will be optimized for a higher precision and a lower recall. That would be the 
more radical approach. 

Since our goal is to is to reduce the lexicographers’ time spent reading and considering 
a surplus of bad examples, and in light of the fact that most headwords are 
represented by many examples in the corpus, we chose the second, radical, approach 
for the training strategy of the machine learner. 

Subsequently, we will report on the performance of the learner on the test data set 
with three different sets of features: bag-of-words (or, more correctly, bag-of-lemmas), 
sequences of parts-of-speech and sub-trees of parse trees as well as combinations 
thereof. For each of these features we use the sub-sequence kernel described earlier to 
train a support vector machine such as machine learning. Since the decision is a binary 
one, i.e. assigning an example to one of two classes, and the performance of the learner 
is compared to human judgement, the data can be ordered and presented in a four-cell 
(2x2) contingency table. The four cells contain the number of examples that are a) 
assigned to class 1 by the human annotator (‘ha’) and by the machine learner (‘ml’), b) 
assigned to class 2 by ha and class 1 by ml; c) assigned to class 1 by ha and class 2 by 
ml and d) assigned to class 2 by both ha and ml.  
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ha 
 ml 

class 1 (good) class 2 (bad)  

class 1 603 (a) 487 (b) 1,090 (e) 

class 2 1,774 (c) 3,830 (d) 5,604 (f) 

 2,377 (g) 4,317 (h) 6,694 (i) 

Table 2: A 2x2 contingency table for an example data set. 

We can compute the marginal sums for each of the rows and columns (cells e–h) and 
the sum total (cell i). In Table 2 we present the full contingency table for one of our 
experiments. We can derive the following measures from this table: 

• recall for class 1 examples = 603 / 2,377 = 25.3% (i.e. approx. one fourth of the 
class 1 examples according to ha are labeled as such by ml) 

• recall for class 2 examples = 3,830 / 4,317 = 88.7% 
• precision for class 1 examples: 603 / 1,090 = 55.3% (i.e. slightly more than half 

of the class 1 examples according to ha are accepted by ml, the rest are 
dismissed) 

• precision for class 2 examples: 3,830 / 5,604 = 68.3%. 

From these figures we further derive the F-score, i.e. the weighted mean of recall and 
precision as well as the accuracy. Accuracy is defined as the number of 
correctly-classified examples divided by the sum total of examples (i.e (cell a + cell d) 
/ cell i). For our example: 

• the F-score for class 1 examples is 0.34 
• the F-score for class 2 examples is 0.76 
• the accuracy is 0.66 

In Table 3, we list the recall and precision for both class 1 and class 2 examples, which 
are listed for several feature settings. 

Feature 
representation 

Recall class 
1 

Precision 
class 1 

Recall class 
2 

Precision 
class 2 

Bag-of-lemmas 0.23 0.55 0.89 0.68 

Part-of-speeches 0.30 0.57 0.87 0.69 

Parse trees 0.32 0.60 0.88 0.70 

Table 3: Recall and precision for both classes and different sets of features 
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From these values, the F-score for class 1 and class 2 examples, as well as the accuracy 
value, can be derived, see Table 4. 

Feature 
representation 

F-score 
class 1 

F-score class 
2 

Accuracy 

Bag-of-lemmas 0.32 0.76 0.66 

Part-of-speeches 0.39 0.78 0.67 

Parse trees 0.42 0.78 0.68 

Table 4: F-score and accuracy for different sets of features. 
The best values achieved are highlighted. 

The data in Tables 3 and 4 show that all feature settings work reasonably well, i.e. we 
achieve a significant reduction of class 2 examples while still preserving a sufficient 
number of class 1 examples. The differences between the feature configurations are 
minimal, with the parse tree feature generating the best result. 

From the point of view of the lexicographer, two questions are important beyond the 
measurable performance of the learner: i) how many (good, bad) examples do I get rid 
of? and ii) do I have to face, at the end of the selection process, a significant share of 
headwords with no example left at all? Let us look into both questions on the basis of 
our test data set and the example given in Table 1. 

i) From the 6,694 examples that have been selected by the rule-based example 
extractor, only 1,090, i.e. 16.3%, have been accepted by the learner and therefore are 
available for the lexicographers’ inspection. Of course, the loss of good examples is also 
considerable. In the example setting 1,774 class 1 citations would be lost, which leads 
us to the second question. 

ii) The test data consist of examples for 438 headwords. For 415 of these, there is at 
least one example which has been classified into class 1 by the learner. Unfortunately, 
for only 342 of the headwords there is at least one example that has also been assigned 
to class 1 by the human annotator. The loss of (really) good examples is therefore 
considerable and should be remedied somehow.  

As we have shown above, the implementation of a machine learning component as a 
filter is also a matter of choosing a good measure of permeability of such a filter. 
However, there is no invariant optimal setting for this measure. The optimal setting 
depends upon the task and the context. In our context, there were a sufficiently large 
number of citations to draw from, a limited amount of time for the lexicographers to 
inspect these examples and a rather small number of citations which were eventually 
selected for inclusion in the dictionary. The optimal setting in such a context equates 
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to a reduction of as many bad examples as possible, at the price of also removing many 
good examples. Nevertheless, it is not acceptable that for a larger amount of 
headwords no example is accepted at all. In the next section we will therefore present 
some suggestions of how to cope with this ‘collateral damage’. 

7. Conclusions and further work 

We have learned from our experiment that the machine learner, using the radical 
approach to removing example sentences from the initial set, also removes a 
considerable number of examples the lexicographers might want to see and potentially 
consider for inclusion in their articles. We, therefore, suggest the following strategies to 
remedy this ‘collateral damage’. 

1. The simplest strategy would be to increase the initial data set, i.e. to instruct 
the rule-based good-example extractor to provide a larger number of example 
sentences. As a consequence, the number of examples that are accepted by the 
machine learner is larger but still of a higher quality than the set of examples 
that is initially delivered by the good-example extractor.  

2. A more ambitious approach would be to use more information in order to 
balance the number of false negatives (= rejected examples we would like to see) 
against the number of false positives (= accepted examples which we would not 
like to see). One of the interesting characteristics of the machine learning 
approach that we have been using is that it does not only deliver a decision but 
also a confidence level for the decision. The confidence values for all possible 
decisions add up to 1; therefore, they can be interpreted as the probability that 
the decision is correct. Currently, the value is set to class 2 if the confidence 
towards this class is >0.5. One could try to set a higher confidence level for the 
rejection of an example sentence. We have not yet looked into this, but an 
experiment with different thresholds might improve the results. 

Another issue which affects all forms of example selection is the polysemy of many 
headwords. Typically, a polysemous word is very often used in one major sense, and 
less often or infrequently in its other(s) senses. This kind of distribution of usage 
examples over sentences makes each kind of sampling prone to the error of missing all 
examples for the infrequent sense(s). The burden to detect such gaps is again with the 
lexicographer. Ideally, the example sentences for a headword are initially grouped into 
clusters that, with more or less precision, represent different senses of the headword 
and outliers that cannot be easily assigned to any sense. Such an approach to 
combining good example extraction with word sense induction has been suggested by 
Rundell et al. (2014). We will in our future research follow the ideas expressed in this 
paper and apply them to our (German) data. 
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