
Making 1:N Explorable: a Search Interface for the ZAS
Database of Clause-Embedding Predicates

Peter Meyer1, Thomas McFadden2

1Institut für Deutsche Sprache, R 5, 6-13 D-68161 Mannheim
2 Leibniz-Zentrum Allgemeine Sprachwissenschaft, Schützenstr. 18, D-10117 Berlin

E-mail: meyer@ids-mannheim.de, mcfadden@leibniz-zas.de

Abstract
We introduce a recently published corpus-based database of German clause-embedding predicates and present
an innovative web application for exploring it. The application displays the predicates and the corpus examples
for these predicates in two separate tables that can be browsed and searched in real time. While familiar web
interface paradigms make it easy for users to get started, the data presentation and the interactive advanced search
components for the two tables are designed to accomodate remarkably complex query needs without the need for
resorting to a dedicated query language or a more specialized tool. The 1:n relationship between predicates and
their examples is exploited in the two tables in that, e.g. the predicate table also shows, for each predicate and each
example attribute, all values that occur in the examples for this predicate. An easy-to-use visual query builder
for arbitrary boolean combinations of search criteria can optionally be displayed to pre-filter the underlying data
presented in both tables. Several options for altering quantifier scope can be activated with simple checkboxes
and considerably widen the space of searchable constellations.

Keywords: user interface; lexical data; query building; relational database

1. Introduction

This paper discusses the conceptual underpinnings of a web application user interface for
exploring a recently published multilingual corpus-based database of clause-embedding
predicates (Stiebels et al., 2017: http://www.owid.de/plus/zasembed2017/main). The re-
lational database represents two basic types of entities that stand in a 1:n relationship:
predicates (mostly verbs) and the corpus examples selected for a given predicate. Each
of the two types is annotated with its own set of attribute-value pairs (henceforth, ex-
ample properties vs. predicate properties). In each set, some attributes only apply to a
certain subset (e.g. the definiteness attribute only applies to examples with embedded
nominalization).

Despite the simplicity of a 1:n relationship, different quantifier/negation scope constella-
tions can give rise to remarkably complex search semantics. In view of this complexity,
the user interface was designed with the following goals: to present the user with a simple
initial tabular view of the data that has straightforward and easy-to-use real-time filtering
and sorting options, in line with accepted search interface design principles (Hearst, 2009;
Morville & Callender, 2010; Russell-Rose & Tate, 2012), and to empower advanced users
to incrementally construct ever more complex queries without resorting to domain-specific
or generic query languages or introducing a separate “advanced search” interface layer.

Section 2 gives a short overview of the linguistic background and history of the ZAS
database and introduces its basic data structure. In Section 3, we discuss the require-
ments that this structure and the target audience impose on a sufficiently elaborate search
tool and how this affects the general objectives of the web application. The design de-
cisions that were made to meet these requirements are presented in-depth in Section 4,
and we briefly sketch the front-end and back-end technology in Section 5. The closing
Section 6 points out a number of limitations of the tool in its current state, discussing
some alternatives and competing approaches.

495

http://www.owid.de/plus/zasembed2017/main

2. The ZAS database of clause-embedding predicates
2.1 Background on the database

The ZAS database of clause-embedding predicates documents how lexical predicates in-
teract with clausal complementation. The examples in (1) give a simple demonstration
from English of the kinds of patterns that are of interest.

(1) a. Max believes/knows/hopes [that Sarah works there].
b. Max *believes/knows/*hopes [whether Sarah works there].
c. Max *believes/*knows/hopes [to work there]

While a finite declarative clause is possible as the complement of believe, know or hope,
only know can introduce finite interrogatives, and only hope can take control infinitives.
It is thus well known that the properties of specific lexical predicates are important for
understanding clausal embedding. In much of the literature, the discussion of complemen-
tation types and their licensing has focused on a relatively small number of predicates,
taken to be representative of large classes with the same behavior (e.g. believe-class vs.
try-class vs. want-class verbs in the discussion of English infinitives). However, it is clear
that this oversimplifies matters and fails to capture interesting variation and crucial differ-
ences in how specific predicates interact with their syntactic environment. An important
demonstration of this point can be found in Levin (1993), which examines in detail the
range of distinct classes that can be identified for English verbs based on the structural
alternations they engage in.

The ZAS database grew out of the conviction that a similar level of attention to de-
tail is necessary to understand clausal complementation and what properties of lexical
predicates are relevant for the behavior of their complements (see also Stiebels, 2011: for
more detailed discussion). The methodology chosen to tackle this problem was to build
a research tool around an extensive collection of data, illustrating the types of embed-
ded clauses found with a large number of lexical predicates. Whereas a common prior
strategy has been to assume predicate classes based on external semantic criteria, and
then to investigate their behavior, we wanted to make it possible to identify classes of
predicates based on the properties of the clauses they embed. We would thus collect, for
each predicate included, a series of examples of different types of embedding, annotating
each for a number of relevant grammatical properties, with the goal of illustrating all of
the grammatical embedding possibilities for each predicate.

The database was conceived and initiated by Barbara Stiebels and gradually built up
and extended by a team of researchers and student assistants at the Leibniz-Zentrum
Allgemeine Sprachwissenschaft (ZAS) in Berlin (http://www.zas-berlin.de) from 2003
onwards. After her 2012 departure for the University of Leipzig, coordination of the
project was taken over by Thomas McFadden in 2014. Through most of this period,
the focus has been on contemporary German, though significant data have been col-
lected for a number of other languages and older stages of German. It was decided early
on that the data should not come from invented examples, but should be naturally oc-
curring sentences extracted from corpora. The two most important corpus sources for
the contemporary German portion are the Digitales Wörterbuch der Deutschen Sprache
(DWDS; http://www.dwds.de), and the Deutsches Referenzkorpus (DeReKO; http://

496

http://www.zas-berlin.de
http://www.dwds.de
http://www1.ids-mannheim.de/kl/projekte/korpora/

www1.ids-mannheim.de/kl/projekte/korpora/). The embedding types systematically col-
lected are infinitival (2-a) and nominalized (2-b) complements, verb-final finite declarative
(2-c) and interrogative (2-d) complements (both polar and wh-questions), and embedded
verb-second clauses (2-e); coverage of parentheticals and direct speech complements is
ongoing work.

(2) a. Der
the

Vorsitzende
chair

befahl,
ordered

den
the

Zeugen
witness

aufzurufen
to-call

‘The chair ordered the witness to be called’ (ZDB 1565: DWDS K-Ge 1910)
b. Sie

the
müssen
must

sich
themselves

mit
with

dem
the

Verkauf
sale

der
of-the

Wohnungen
apartments

beeilen.
hurry

‘They need to rush the sale of the apartments.’ (ZDB 1523: DWDS BZ 1995)
c. Wir

we
machen
make

ab,
off

daß
that

er
he

mich
me

um
at

acht Uhr
8 o’clock

besucht.
visits

‘We agree that he will meet me at 8 o’clock.’ (ZDB 70: DWDS K-Be 1980)
d. Gib

give
acht,
attention

was
what

du
you

dir
yourself

wünschst!
wish

‘Be careful what you wish for.’ (ZDB 218: IDS wpd 2011)
e. Aber

but
ich
I

ahne,
suspect

es
it

wird
becomes

nicht
not

mehr
more

als
than

Blech.
sheet-metal

‘But I can tell it’s just going to be nonsense.’ (ZDB 256: IDS brz 2006)

The idea is that every predicate included should be checked in all relevant meaning variants
and valency patterns, with a series of properties relevant for specific complementation
types checked systematically. For example, with predicates that can embed finite verb-
second clauses like (2-e), we checked for both indicative and subjunctive examples, and
with predicates that can embed control infinitives like (2-a), we searched for examples with
different types of control. Every example was then coded for these and several additional
relevant properties. The guiding principle is that only “surfacy” features should be coded
in order to keep the annotation theory-neutral and operationalizable.

In mid-2014, a collaboration was initiated with Carolin Müller-Spitzer and Peter Meyer of
the Institut für Deutsche Sprache (IDS) in Mannheim, with the goal of making a version
of the database publicly available on the OWIDplus platform for lexical-lexicographic data
and resources (http://www.owid.de/plus/). A new search interface designed specifically
for the ZAS database was then developed by Meyer in consultation with the ZAS team.
The current public beta release of the database, which is the focus of this paper, contains
only the data from the contemporary German part of the database. Additions are planned,
however, for future releases of data on other languages and the historical stages of German.

2.2 The structure of the database and the 1:n relationship

The ZAS-internal version of the database is implemented in MySQL, with an in-house
interface written in PHP for entering, editing and searching in the data. It is built primar-
ily around two sets of data and the connections between them: a table of predicates and
a table of corpus examples. Each example is associated with one predicate — it demon-
strates one particular embedding use of that predicate. The two tables consist of a series

497

http://www1.ids-mannheim.de/kl/projekte/korpora/
http://www.owid.de/plus/

of entries, each of which contains several pieces of information on a single predicate or
example. An entry in the predicate table contains the (infinitival) form of the predicate
itself, as well as information about its syntactic category and morphological make-up.
An entry in the example table contains far more information, with values for up to a
dozen properties. This includes the text of the example itself, an indication of the argu-
ment structure and realization of the matrix clause, finiteness and word-order properties
of the embedded clause, what complementizer it is introduced by (if any), whether it is
an interrogative, as well as information about the corpus source and a link to the entry
for the predicate. As for the size, the contemporary German version currently contains
data on over 1700 distinct lexical predicates, exemplified through nearly 17,000 naturally
occurring corpus examples.

While there is some additional complexity in the internal implementation (e.g. to deal
with multiple languages and allow for easy extensibility), the system’s primary goal is
to provide information about examples and predicates, and the public version of the
database and the OWIDplus search interface are built around this idea. At any given
time, the interface displays either an example table view or a predicate table view, and
every search query is ultimately interpreted as a search for either predicates or examples
fitting certain criteria. At a basic level, this is fairly straightforward, but there are some
cases where the interactions between predicate properties and example properties can
lead to significant complexity. This arises from the fact that, while each example is tied to
exactly one predicate, a given predicate will normally be associated with several examples.
Dealing with this 1:n relationship presents interesting challenges for the design of the
search interface, and thus will be extensively discussed throughout this paper. To set the
stage, it will be useful to go into a bit more detail here about how examples, predicates,
and their respective properties interact in the structure of the database itself.

The database is designed to enable sophisticated searches in order to obtain lists of pred-
icates with complex combinations of properties. But it is the examples that constitute
the bulk of the data, collected and coded for research use in the database, and what
primarily interests us about the predicates is what kinds of embedded clauses are found
in the examples associated with them. The information about these clauses is recorded in
example properties, and thus to a large extent we search for predicates not by specifying
their own properties, but those of the examples they embed. For example, we might want
to search for all predicates that can embed subjunctive verb-second clauses, but no in-
finitives. Of course, it works the other way around as well. When searching for examples,
some of the properties we might be interested will actually be properties of the predicate.
We could e.g. search for all examples where the embedding predicate is a denominal verb
in the hopes of finding out whether this correlates with the control status of embedded
infinitives.

The crucial thing is that, despite this parallel, example properties and predicate properties
are logically distinct in the way they function, and this is precisely because of the 1:n
relationship. Let us consider the predicate properties first, because their status is simpler.
In a search for predicates, constraints on predicate properties filter the results in an
obvious way. If we specify the value Pt-V for the predicate property “morphology”, the
search will only return predicates that are morphologically particle verbs. The handling of
predicate properties is just as simple in a search for examples, because for every example,
there is exactly one predicate. We can thus treat predicate properties as though they

498

were example properties: we can search for examples with the value Pt-V for the property
“morphology” (in Section 4.3 we will introduce the term derived example criterion for this
concept), and rather than a list of all predicates that are morphologically particle verbs,
we will get a list of all examples in which the predicate is morphologically a particle verb.

This simple situation does not hold with example properties. Matters are straightforward
in an example search, because constraints on example properties simply filter examples.
If we specify the value KONJ I for the example property “verb mood”, the search will
return only examples in which the embedded clause is finite and in the subjunctive I mood.
But in a predicate search, the logic of 1:n makes things much more interesting. Because
each predicate is associated with many examples, we cannot simply translate an example
property into an implicit predicate property. We cannot say “return all predicates with the
value KONJ I for the example property “verb mood””, because there is no unique example
associated with each predicate. Rather, the relationship between predicates and example
properties is more complex and has to be made clear in the search. The basic idea is that
you are searching for predicates which are associated with at least one example that is
characterized by the example property. We can rephrase this in the terms of the example
above as “return all predicates which appear in at least one example which has the value
KONJ I for the example property “verb mood””. By itself, this step is not particularly
difficult, but it raises interesting questions when it comes to building complex queries
involving more than one property.

Imagine now that we are interested in both subjunctives and embedded verb second —
two properties that have often been thought to go together in German. There are two
different ways to understand a search for predicates that can embed subjunctive clauses
and verb-second clauses. A simple conjunction of two queries might return all predicates
that have at least one subjunctive I example and at least one verb-second example. In
this case, subjunctive I and verb second are independent, and because each predicate is
associated with multiple examples, they may both apply to the same example, like (3-a),
or they may apply to distinct examples associated with a single predicate, like (3-b) which
is subjunctive I and (3-c) which is verb second.

(3) a. Er
he

droht an,
threatens

er
he

werde
will.sbjI

nun
now

jemanden
someone

befragen.
question

‘He’s threatening that he’ll question someone now.’ (ZDB 356: DWDS K-Be
1999)

b. Man
one

nahm
took

an,
on

daß
that

Leben
life

ohne
without

Licht
light

unmöglich
impossible

sei.
be.sbjI

‘It was assumed that life was impossible without light.’ (ZDB 624: DWDS TS
1999)

c. Zdenka
Zdenka

hat
has

sich
herself

ihrerseits
her-side

in
in

Matteo
Metteo

verliebt
loved

und
and

schreibt
writes

ihm
him

die
the

Liebesbriefe,
love-letters

von
from

denen
which

er
he

annimmt,
assumes

sie
they

stammen
come

von
from

Arabella.
Arabella

‘Zdenka for her part has fallen in love with Matteo and writes him love letters,
which he assumes come from Arabella.’ (ZDB 629: DWDS K-Wi 1998)

499

This may indeed be what we want. But a different possibility is that we are interested in
predicates that can embed a subjunctive I verb-second clause, i.e. we want single examples
like (3-a) in which both properties hold. A task for our tools is thus to make both of these
logical combinations of multiple example properties in a single predicate search possible
in a way that is as easy as possible to understand. We will discuss the way the interface
does this in Section 4.3.

3. Requirements for the UI
The new user interface for the published version of the ZAS database on the OWIDplus

platform has to meet two broad requirements which we will discuss in turn. First, it has to
provide facilities for formulating queries that can take full advantage of the range of data
stored in the database and the connections between them. Second, it must be useable, at
least at a basic level, for researchers who are interested in the behavior of clause-embedding
predicates but have limited experience with databases and sophisticated search tools.

3.1 Semantic requirements for possible searches

The minimum capabilities necessary for the interface to actually reflect the structure of
the underlying database are to allow search queries for both examples and predicates,
where both types of query can refer to both example criteria and predicate criteria. To
really exploit the full capabilities of the database, the interface should additionally provide
the means to build complex queries combining multiple example and predicate criteria.
The simplest form of this would be to allow the conjunction of criteria, interpreted so
that the results returned by a search would be the examples or predicates simultaneously
meeting all of the criteria specified. We discuss how the interface manages this in sections
4.1 and 4.2. The 1:n relationship means, however, that even this simple conjunction can
potentially involve distinct semantics when a search for predicates involves more than one
example criterion. One could design an interface that allows searches with all arbitrary
boolean combinations of the different types of criteria, but much of this complexity is
unlikely to be particularly useful for the study of lexical effects on clausal embedding,
and certain types of combinations are more likely to lead to searches that are difficult to
interpret than to allow the posing of typical research questions. We discuss the relevant
trade-offs and the design decisions made in Section 4.3.

3.2 UI design and usability requirements

The original ZAS-internal interface was designed for team members working on the
database. It thus includes facilities for entering and editing data in addition to running
searches, and it works on the assumption that users are well acquainted with the struc-
ture and workings of the database. The new interface for the public version, however, is
intended purely as a way to search and explore the database, for a wide audience of users,
including novices. Thus the following considerations guided the design process:

• The interface should be explorable and discoverable for users with various degrees
of prior experience.
• It should present an intuitive view of the data, making use of established interface

design metaphors familiar from other web applications so that users can easily
understand what they are looking at and how they can manipulate it.

500

• The view should be updated in real time whenever the user takes any action, so
that they get immediate feedback and can quickly explore the consequences of
different types of input.
• Running a basic query for an example or predicate satisfying some criterion should

be extremely easy.
• Running complex queries involving boolean combinations of several criteria, while

differentiating the various semantics relating to the 1:n relationship, should be
possible.
• Ideally, it should be possible to get from the simplest search to the most complex

by adding pieces step-by-step, where each intermediate step is a valid query, so
that users can build their way up from novice to expert usage.
• The system should be equipped with extensive documentation, with facilities for

accessing relevant parts directly from specific bits of the interface.

4. Design of the UI
4.1 Central concepts and basic search

The design of the user interface reflects the fact that the database is structured around
two tables. At any given time, a version of either the example table or the predicate
table is presented. The rows correspond to distinct entries — predicates or examples —
and the columns display the properties associated with each entry. Every type of user
input operates on one of these two views, with the results shown by updating the view in
real time. Entering and modifying search queries manipulates restrictions on the entries
displayed in the table. Thus there is no dedicated “query entry view” or “search results
view”, but a single view combining both, allowing users to immediately see the effects of
the search criteria they enter and to modify them on the fly in order to test out and craft
precise queries.

The two tables are identical in how they work and respond to input and boast the same
system of integrated documentation — a detailed User Guide with i© markers adjacent
to the various interface elements that link directly to the relevant section of the Guide.
The interface also provides facilities for exporting the data currently displayed in either
table for local storage and processing. This function is disabled in the current public beta
but will be activated in future releases. Both tables also allow for an “advanced search”
which adds a more sophisticated query builder to the usual table. Note, however, that the
advanced search is not an alternative to the basic table views, but rather an extension.
The full functionality of the basic example and predicate tables is still available and
works in the same way, just with additional possibilities for filtering the data. This will
be described in detail in Section 4.2.

Switching between the example and predicate tables of course radically alters the way
in which the data are presented. Even still, in most cases this change does not actually
affect which data are presented, only the perspective from which they are viewed. This
is because both table views combine information on both examples and predicates and
display them in a single table, so that in general the same data can be presented either
way — we say that the two tables are ‘in sync’. The example table also contains predicate
properties, since each example is associated with a predicate, and the predicate table also
contains example properties, since each predicate is exemplified by a series of examples.
There are, however, circumstances in which the tables can go out of sync, in particular

501

when searching for predicates based on example properties that can in principle apply to
more than one example. This will be discussed in Section 4.3.

The main properties of the basic table views can be seen in Figure 1, with the relevant
numbered features explained below.

Figure 1: Basic Search

1 Selection of either the example or the predicate table view
2 Headers showing the properties currently displayed, blue for predicate properties,

orange for example properties. Clicking on a property sorts the table by its values.
3 Facilities for specifying which properties are displayed as columns
4 Text box for entering a string that should be contained in the value for the relevant

property, with autosuggest functionality and regular expressions
5 Pull down, for properties with a small number of permissible values
6 Click here to build an advanced search
7 List of entries in the table that match the current search, updated in real time.

Double-clicking a row brings up complete information on its entry.

4.2 Advanced searches with the query builder

The per-column filtering options of the two tables are good for simple, quick and intuitive
searches, but they are restricted in the following ways:

• For each example or predicate property, at most one search criterion may be for-
mulated.
• The search criteria cannot be negated.
• The only way the table filtering criteria can be combined is by logical conjunction,

such that all criteria must be fulfilled at the same time.

502

The interface’s advanced search option provides an additional layer of search functionality
that eliminates these restrictions. The advanced search is not a separate mode of access,
i.e. it does not replace the interactive and explorative data presentation in the two tables,
but complements it by letting the user restrict the underlying data set that is presented.
To be more precise, both tables present the search result for the advanced query, albeit
from two different perspectives. The data may then undergo filtering and sorting in a
table, which amounts to the logical conjunction of the advanced search criteria and the
filtering criteria defined in a specific table. In a sense, the advanced query acts as an
additional “super-filter” on both tables.

Advanced search can be activated and deactivated at any time by a simple mouse click.
When activated, the advanced query builder is shown above the table. As with the stan-
dard table filters, any change a user makes to the advanced query is immediately reflected
in both tables. The query builder component itself follows the design of search compo-
nents in modern operating systems, such as the advanced search offered in the default
file manager “Finder” on Apple computers or in the query builder integrated in Microsoft
Outlook. It allows the user to formulate an arbitrary number of criteria, even multiple
criteria concerning the same property. To this end, the user may add any number of cri-
terion selectors using the “+” button. Each criterion selector offers all types of search
criteria also available as table filters. Criterion selectors for example properties have the
orange background of the example table, while those for predicate properties have the
blue one of the predicate table.

Arbitrary boolean combinations are supported as follows: All criterion selectors have an
additional drop-down menu for optional negation; in addition, there is a special type of
search criterion called “group of conditions” that opens up a subgroup of search criterion
selectors connected by possibly negated conjunction or disjunction (logical “or”, “and”,
“nor” or “nand”), yielding four types of logical connectivity: “all/none/at least one/not
all subgroup criteria is/are true”. Subgroups may be nested inside subgroups to any depth.
The top-level criterion selectors of the advanced search can be thought of as implicitly
contained in a conjunction group. Figure 2 shows a complex advanced search with nested
subgroups, yielding examples with a predicate containing the string “sag” that embed an
infinitive clause or a subordinate clause with both a complementizer containing “d” and
a verb in the subjunctive I.

The table-specific filtering options and the advanced search system show intentional over-
lap with regard to both functionality and design. Input widgets in tables and in advanced
search work exactly the same way. When working with a specific table, the user can freely
choose between adding a filter to the table or adding the same condition as an advanced
constraint on the top-level of the advanced query builder.

The advanced settings for search semantics, to which we now turn, are somewhat different.

4.3 Advanced search semantics

As discussed above, the 1:n relation between predicates and examples gives rise to poten-
tially complex search questions beyond mere boolean combinations of criteria. The user
interface introduced in this paper offers a principled approach to altering the semantics
of queries through three user-defined settings. A deeper understanding of these settings

503

Figure 2: Building an advanced query

requires looking into how aspects of scope and negation interact in complex queries. A
tutorial-style and hands-on introduction to these advanced aspects can be found in the
online User’s Guide. In what follows, we approach the subject from a formal perspective.

Let E denote the set of examples and P the set of predicates. Different example criteria will
be denoted by E1, E2, etc., different predicate criteria by P1, P2, etc. An example criterion
in the narrow sense (henceforth, basic example criterion) can only be applied to examples
and puts a user-defined constraint on a specific example property; if the criterion E1
actually applies to example e ∈ E, this will be written in predicate-logic fashion as E1 (e).
A basic example criterion corresponds to an example property filter in the example table.
Correspondingly, a predicate criterion in the narrow sense (henceforth, basic predicate
criterion) can only be applied to predicates and puts a user-defined constraint on a specific
predicate property; if the criterion P1 actually applies to predicate p ∈ P, this will be
written as P1 (p). A basic predicate criterion corresponds to a predicate property filter
in the example table. Almost all search criteria can be used in negated form; we will use
the superscript bar, as in X, to signal user-defined negation of a criterion X, such that
X (x)⇔ ¬X (x). We write pred(e) to denote the predicate exemplified by example e. To
make the formulas a bit shorter and more legible, the letters e and p will always be used
in such a way that e ∈ E and p ∈ P are implied.

In what follows, we assume that a search query is formulated in the advanced search query
builder and we pose the question of how exactly these criteria define a search result set
with respect to the two tables.

Queries concerning the example table are the easier part of the picture. For each pred-
icate criterion Pj we define a derived example criterion EPj such that EPj (e) is true iff
Pj (pred (e)). If Pj, for instance, means “is a verb”, then EPj stands for “is an exam-
ple whose predicate is a verb”. A derived example criterion corresponds to a predicate
property filter in the example table. A single search criterion (regardless of whether we
are dealing with table filters or with advanced query criteria) as applied to the exam-

504

ple table is either a basic or a derived example criterion. Since the example table shows
the result of applying the conjunction of table filters and advanced search criteria to the
entire database data set, searching the example table always means applying a boolean
combination of basic and derived example criteria. To simplify formal exposition, we will
stick to a sample advanced query consisting of a conjunction of two basic example criteria
E1 and E2 and one basic predicate criterion P3; extension to the general case is straight-
forward. When applied to the example table, an example e is shown in the table if and
only if E1 (e) ∧ E2 (e) ∧ EP3 (e), which is equivalent to formula (1):

E1 (e) ∧ E2 (e) ∧ P3 (pred (e)) (1)

Figure 3 shows a concrete case of this kind of query on the example table, in a search
for examples with a particle verb (Pt-V) [criterion P] that embed an interrogative clause
[criterion E1] with a verb in subjunctive I mood [criterion E2].

Figure 3: Sample advanced query with results in the example table

At this point, we will briefly discuss the semantics of example criteria derived from negated
predicate criteria. The relevance of this interlude will emerge later. It is easy to see that
EPj (e) ⇔ EPj (e). In our previous example case, Pj would mean “is not a verb”; corre-
spondingly, EPj represents the property “is an example whose predicate is not a verb”,
which is trivially coextensive with EPj “is not an example whose predicate is a verb”. In
other words, it is not necessary to separately define derived example criteria for negated
predicate criteria; one can always negate the derived criterion instead.

Let us now turn to the way searches apply to the predicate table. When our sample ad-
vanced query with two basic example criteria E1 and E2 and one basic predicate criterion
P3 is applied to the predicate table, then, with default settings, a predicate p is shown
in the table if and only if the basic predicate criterion applies to p and there is at least
one example e for predicate p such that both example criteria apply to e. Formally, it

505

is required that ∃e (p = pred(e) ∧ E1 (e) ∧ E2 (e))∧ P3 (p), which is equivalent to formula
(2):

∃e (p = pred(e) ∧ E1 (e) ∧ E2 (e) ∧ P3 (pred (e))) (2)

In other words, the default semantics for searches in the predicate table requires that
all basic example criteria be met simultaneously by (at least) one example e for p. The
reason why the default settings for predicate table searches are defined like this becomes
apparent from a comparison of formulas (1) and (2). It is easy to see that, with our
sample search, a predicate p will appear in the predicate table if and only if at least one
example for p appears in the example table. We say that the two tables are in sync in this
case; this is a formalization of the intuitive notion, mentioned earlier, that both tables
represent the same underlying set of data. This is, of course, also the ultimate reason why
it is legitimate to have one advanced search applying to two different tables. Figure 4
shows the results of applying the sample query of 3 on the predicate table, in a search for
particle verb (Pt-V) predicates [criterion P] for which there is at least one example that
embeds an interrogative clause [criterion E1] with a verb in subjunctive I mood [criterion
E2]

Figure 4: Sample advanced query with results in the predicate table

In many cases, the default semantics for the predicate table is not sufficient to meet users’
needs. In our sample advanced query, a user might be interested in seeing all predicates
p fulfilling criterion P3 for which there is

• at least one example e1 fulfilling criterion E1 and
• at least one example e2 (possibly, but not necessarily identical to e1) fulfilling

criterion E2.

506

To handle this case, the user can specify what we (for want of a better term) call inde-
pendent example semantics for the advanced query builder by ticking the “independent
example criteria (adv. search)” checkbox appearing under the predicate table. With this
semantics turned on, the search logic for the predicate table re-interprets the basic exam-
ple criteria as derived predicate criteria. Clearly, deriving predicate criteria from example
criteria has to be done differently than the other way around. We define, for each basic
example criterion Ei, a derived predicate criterion P Ei that holds of a predicate p iff
∃e (p = pred (e) ∧ Ei (e)). If Ei, for example, means “has an embedded infinitive clause”,
then P Ei stands for “is a predicate with at least one example that has an embedded in-
finitive clause”. With our sample query and independent example semantics turned on, a
predicate p appears in the predicate table if and only if (3) holds:

P E1 (p) ∧ P E2 (p) ∧ P3 (p) (3)

In formula (3), the two derived predicate criteria induce, by definition, two separate exis-
tential quantifications over the set E of examples, whereas the standard query semantics
of (2) puts both example criteria in the scope of one existential quantifier. Figure 5 shows
how the sample query of 3 is applied to the predicate table, this time with “independent
example semantics”, returning a list of particle verb (Pt-V) predicates [criterion P] for
which there is at least one example that embeds an interrogative clause [criterion E1] and
at least one example with a verb in subjunctive I mood in the embedded clause [criterion
E2].

Figure 5: Sample advanced query with “independent example semantics”

The behavior of negation in derived predicate criteria is more complicated than with exam-
ple criteria. It is easy to prove that P Ei (p) < P Ei (p). In our previous example, Ei would
mean “does not have an embedded infinitive clause”; correspondingly, P Ei represents the
property “is a predicate with at least one example not embedding an infinitive clause”,

507

which is obviously not the same as P Ei “is not a predicate with at least one example em-
bedding an infinitive clause”. This implies that P Ei , P Ei , P Ei and P Ei are, in general, four
different criteria, because we have two logically different levels of negation. As far as the
user interface is concerned, this implies that, for every derived predicate search criterion,
two separate negation options would be needed to cover all possible cases. We decided
to only offer one of these negation options: negating an example criterion always means
negating the predicate criterion derived from it, as this seems to be the more intuitive
and linguistically more relevant choice. In particular, it makes the formulation of queries
such as the one in Figure 6 more plausible: With independent example semantics, this

Figure 6: Advanced query with three example criteria, one of which is negated

query makes the system look for predicates whose examples exhibit the example types
compDecl and zeroDecl, but not interr. If the negation on the third criterion were to
be interpreted as pertaining to the underlying example criterion, then the query would
read as follows: “Look for predicates that have at least one example with example type
compDecl, at least one example with example type zeroDecl, and at least one example
where the example type is not interr.” Obviously, the third criterion would be redundant
in this interpretation. Overall, the design of the system ensures that the conjunction of a
criterion and its negation always yields an empty result set.

A major complication with independent example semantics is the fact that it puts the two
tables “out of sync”; that is, they do not represent answers to the same query anymore.
The query of Figure 6 produces zero results in the example table since no single example
can fulfill all three conditions at the same time.

Independent example semantics can also be chosen for predicate table filters with the
“independent example criteria (table filters)” checkbox, such that this semantics can be
turned on and off separately for the two search components of the interface. If “indepen-
dent example semantics” is activated neither for the advanced query builder nor for the
table filters, all user-defined example criteria of both search components are, by default,
in the scope of the existential quantifier of formula (2). This can be changed through a
third checkbox “adv. search is separate query”. If this setting is activated, the two compo-
nents (criteria in the table filters vs. in the advanced builder) are treated separately and
generate two separate searches according to formula (2). The two formulas are then joined
with logical AND, returning the intersection of the two result sets. This is useful if a user
looks for examples for predicates that have examples with multiple example properties A,
B, C, . . . and (possibly different) examples with multiple example properties D, E, F ,
. . . . Figure 7 shows the “separate query” setting in a query for predicates that can embed
subjunctive 1 interrogative clauses and subjunctive II finite declarative clauses without a
complementizer.

508

Figure 7: Advanced query for predicates with “separate query” setting turned on

5. Software architecture

Here we briefly sketch the software and data modeling strategy used to ensure that even
complex search results can be presented in the form of potentially very long tables in
real time in the browser, instantaneously adapting to every change a user makes in a
search criterion. Response times have to be very short as each change in one of the search
components, such as adding or deleting a single letter in a text field, generates a new
server request.

5.1 Backend and database design

The version of the ZAS database of clause-embedding predicates published on OWIDplus

is a self-contained web application running in a standard Java Servlet container (based
on the Sparkjava framework, sparkjava.com) with an embedded relational database (H2,
h2database.com). For the purposes of the online version, a snapshot of the 14 original
MySQL database tables is systematically denormalized to construct a database of just
two flat tables (examples vs. predicates) where each attribute, including each “inherited”
property, is represented as a separate column, very similar to what is actually presented
to the users in the interface. This “pivoting” procedure, though not strictly necessary,
greatly reduces programming and execution overhead and minimizes the need for joins in
SQL queries.

5.2 Frontend (browser) technology

An important feature of the user interface is that all data is presented in the form of
scrollable tables. Loading up to 17,000 rows with more than 15 columns would take too
long, however. Our solution to this problem consists in virtualizing the table (in our case,
using the DataTables plugin, datatables.net). Only those data that are currently visible

509

sparkjava.com
h2database.com
datatables.net

in the browser (plus some spare rows) are loaded from the server; on scrolling, further
rows are fetched using AJAX (XHR) requests.

5.3 Evaluation

For the amount of data available in the ZAS database, the approach outlined above de-
livers satisfactory response times even for complex queries involving joins, regular expres-
sions etc. Preliminary tests show that the application scales well only up to some 100,000
data rows in the example table. By changing to an in-memory database, this limit can
be pushed considerably; however, datasets with millions or even billions of rows would
require a more elaborate way of indexing the data and, possibly, limiting the application
of regular expressions.

6. Discussion and prospects

The user interface presented in this paper attempts to strike a middle ground between
the availability of complex search options and ease of use. The tool deliberately resorts to
a powerful combination of two familiar and easily accessible types of interactive interface
components, viz. tables with sorting and filtering options and hierarchical query builders.
In addition, a set of three yes/no settings can be used to alter the behavior of scope
and negation, resulting in an amazing range of possible searches. Through the concepts
of inherited columns, derived search properties and the default in-sync setting of search
semantics, the 1:n relation between the two tables is exploited as much as possible.

On the other hand, it is self-evident that the query system is not relationally complete in
the sense of Codd (1972) and, a fortiori, not equivalent in expressive power to standard
SQL. The discussion in subsections 4.2 and 4.3 already pointed to several areas where
the range of possible queries could easily be extended. The possible enhancements listed
below are under consideration for future versions of the interface.

• With “independent example semantics” turned on for the predicate table, the ad-
vanced search criterion input widgets for predicate criteria derived from example
criteria could offer both kinds of negation mentioned in subsection 4.3, such as “{at
least one | no} example: example type {is | is not} {compDecl | zeroDecl | . . . }”.
• Instead of having one global, all-or-nothing setting for “independent example se-

mantics”, the interface could offer a choice to activate this semantics (separate
quantification over example set) for each individual example property, e.g. through
a checkbox available on all predicate criteria widgets. The downside is that it would
be easy to build advanced queries whose precise meaning is difficult to understand
for human users (and therefore not likely to be useful for pursuing typical research
questions).
• An even more general approach to multiple quantifications on the example set
E in the predicate table would be to explicitly introduce a mechanism of “scope
subgroups” in the query builder. All example criteria within a scope subgroup
would be under the scope of a separate existential quantifier on E. Interpreting such
queries can, again, be a demanding task for inexperienced users. On the technical
side, the more scope subgroups are defined in a query, the more SQL joins appear
in the database query on the server side, possibly impairing performance.

510

Finally, we compare our tool against other approaches. A textbook strategy for online
presentation of two tables in a one-to-many relation would be to show the two tables
on different web pages and to take account of the relational character of the data in the
following way:

• create hyperlinks on the ‘many’ side (in our case linking the predicates mentioned
in the example table to the corresponding row in the predicate table);
• create a master-detail view option on the ‘one’ side (in our case showing all exam-

ples for a given predicate upon, e.g., double-clicking a row in the predicate table).

Our solution does provide master-detail views for both tables, but interweaves both data
presentation and search options for the tables to a much higher degree: each table includes
as much information from the other table as possible; standard advanced search works in
a cross-table way; “independent example semantics” options give more search power.

At the other end of the spectrum, a full-blown visual query tool for relational databases
could be used to provide the user with the full expressive power of modern SQL. An
important early example of a relational query language with a graphical interface is Query
By Example (Zloof, 1977; cf. Ramakrishnan & Gehrke, 2002: chapter 6, pp. 177ff.). The
most widely known visual query system today is probably the one found in Microsoft
Access; a large number of interface components and full-blown web applications work
in a similar way. However, such a system would not be friendly for the casual user and
has a much steeper learning curve than the immediate interaction with tables. The case
of “independent example semantics” shows how quickly query formulation can get very
abstract: for each example property included in a predicate search with this semantics,
an additional join with the example table must be created, i.e. a new “instance” of the
example table must be added to the visual representation.

7. Acknowledgements

The work of the second author was supported by the Bundesministerium für Bildung und
Forschung (BMBF, Grant Nr. 01UG1411). We would like to thank Barbara Stiebels and
the ZAS database team, in particular Kerstin Schwabe, Torgrim Solstad, Livia Sommer,
Katarzyna Stoltmann, Noemi Geiger, Gediminas Schüppenhauer and Sybille Kiziltan.

8. References

Codd, E.F. (1972). Relational completeness of data base sublanguages. In R. Rustin (ed.)
Data Base Systems, Proceedings of 6th Courant Computer Science Symposium. New
York: Prentice-Hall, pp. 65–98.

Hearst, M.A. (2009). Search User Interfaces. Cambridge University Press, 1st edition.
Levin, B. (1993). English Verb Classes and Alternations. University of Chicago Press.
Morville, P. & Callender, J. (2010). Search Patterns: Design for Discovery. O’Reilly

Media, 1 edition edition.
Ramakrishnan, R. & Gehrke, J. (2002). Database Management Systems. Mcgraw-Hill,

2nd edition edition.
Russell-Rose, T. & Tate, T. (2012). Designing the Search Experience: The Information

Architecture of Discovery. Morgan Kaufmann.

511

Stiebels, B. (2011). Von den Herausforderungen des lexikalischen Reichtums. In V. der
Geisteswissenschaftlichen Zentren Berlin e.V. (ed.) Bericht über das Forschungsjahr
2010. pp. 51–72.

Stiebels, B., McFadden, T., Schwabe, K., Solstad, T., Kellner, E., Sommer, L. & Stolt-
mann, K. (2017). ZAS Database of Clause-embedding Predicates, release 0.2
(Public Beta). In OWIDplus. Institut für Deutsche Sprache, Mannheim. URL
http://www.owid.de/plus/zasembed2017.

Zloof, M.M. (1977). Query-by-example: A data base language. IBM systems Journal,
16(4), pp. 324–343.

This work is licensed under the Creative Commons Attribution ShareAlike 4.0 Interna-
tional License.

http://creativecommons.org/licenses/by-sa/4.0/

512

http://www.owid.de/plus/zasembed2017
http://creativecommons.org/licenses/by-sa/4.0/

	eLex_2017_Proceedings
	eLex_2017_1_Nimb_etal

