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Abstract
This paper presents an open source machine learning system for structuring dictionaries in digital format into
TEI (Text Encoding Initiative) encoded resources. The approach is based on the extraction of overgeneralised
TEI structures in a cascading fashion, by means of CRF (Conditional Random Fields) sequence labelling models.
Through the experiments carried out on two different dictionary samples, we aim to highlight the strengths as
well as the limitations of our approach.
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1. Introduction

An important number of digitized lexical resources remain unexploited due to their un-
structured content. Manually structuring such resources is a costly task given their mul-
tifold complexity. Our goal is to find an approach to automatically structure digitized
dictionaries, independently of the language or the lexicographic school or style. In this
paper we present a first version of GROBID-Dictionaries,1 an open source machine learn-
ing system for lexical information extraction.

2. Approach

By observing how the lexical information is organised in different paper dictionaries, it is
clear that the majority of these lexical resources share the same visual layout to represent
the same categories of text information. That served as our starting point to develop our
approach for dismantling the content of digitized dictionaries. We tried to build cascading
models for automatically extracting TEI (Text Encoding Initiative; Budin et al., 2012)
constructs and make sure that the final output is aligned with current efforts to unify
the TEI representations of lexical resources. To be easily adaptable to new dictionary
samples, we chose machine learning over rule-based techniques.

2.1 Cascading extraction models

We followed a divide-and-conquer strategy to dismantle text constructs in a digitized
dictionary, based initially on observations of their layout. Main pages (see Figure1) in
almost any dictionary share three blocks: a header (green), a footer (blue) and a body
(orange). The body is, in its turn, made of several entries (red). Each lexical entry can
be further broken down (see Figure 2) into: form (green), etymology (blue), sense (red)
or/and related entry.

Layout features become less relevant when the segmentation process reaches a deeper
information level and we consequently give them up for the corresponding models. The

1 https://github.com/MedKhem/grobid-dictionaries
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Figure 1: First and second segmentation levels of a dictionary page

same logic could be applied further for each extracted block, as long as the finest TEI
elements are not yet reached. But in the scope of this paper, we focus just on the first six
models, details which are given below.

Such a cascading approach ensures a better understanding of the learning process’ output
and consequently simplifies the feature selection process. Limited exclusive text blocks
per level help significantly to diagnose the cause of prediction errors. Moreover, it would
be possible to detect and replace early on any irrelevant selected features that can bias a
trained model. In such a segmentation, it becomes more straightforward to notice that,
for instance, the token position in the page is very relevant to detect headers and footers
but has almost no relevance for capturing a sense in a lexical entry, which is very often
split over two pages.

2.2 Towards a more unified TEI modelling

Our choice for TEI, as the encoding format for the detected structures, is based on its
widespread use in lexicographic projects, as well as on some technical factors which will be
detailed in the following section. The domination of the lexicographic landscape by TEI is
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Figure 2: Example of the segmentation performed by the Lexical Entry model

due to the fact that this initiative has provided the lexicographic community with diverse
alternatives for encoding different kinds of lexical resources, as well as for modelling the
same lexical information. However, the flexibility that this standard ensures has led to
an explosion of TEI schemes and, consequently, limited the possibilities for exchange and
exploitation.

Our cascading models are conceived in a way to support the encoding of the detected
structures in multiple TEI schemes. But to avoid falling into the diversity trap, we are
adopting a format that generalises over existing encoding practices. The final scheme has
not yet been finalised, but we are continuously refining our guidelines as we move deeper
with our models and apply them to new dictionary samples. We are aiming to ensure a
maximal synchronisation with existing research efforts in this direction, by collaborating
with COST ENeL and ISO committee TC 37/SC 4.

Presenting the details of our encoding choices is beyond the scope of this paper, since we
are still shaping them, especially for fine grained information. But we aim to highlight
some constraining decisions we made for the upper levels, to give an idea about our mod-
elling direction. A lexical entry, for instance, is always encoded using <entry> exclusively,
which means we do not make use of any possible alternatives, such as <superEntry> and
<entryFree>. The semantic loss is not important in this case, since the nature of the
entry could be inferred from the elements it contains. As for lexical entries, they can be
completely encoded using five main elements: <form> for morphological and grammat-
ical information of the whole entry, <etym> for etymological information, <sense> for
semantic and syntactic information, <re> for related entries and <dictScrap> for any
text that does not belong to the previous elements. Note here that we are trying to use
the more generic elements to encode the lexical information in each level, which will be
more refined in the following levels.

3. GROBID-Dictionaries

To implement our approach, we took up the available infrastructure from GROBID (Lopez
& Romary, 2015) and we adapted it to the specificity of the use case of digitized dictio-
naries.

3.1 GROBID

GROBID (GeneRation Of Bibliographic Data) is a machine learning system for parsing
and extracting bibliographic metadata from scholar articles, mainly text documents in
PDF format. It relies on CRF (Lavergne et al., 2010) to perform a multi-level sequence
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labelling of text blocks in a cascade fashion which are then extracted and encoded in TEI
elements. Such an approach has been very accurate for that use case and the system’s
Java API has been one of the most used by bibliography research platforms and research
bodies worldwide.

We have been struck by the analogy between the structures that can be extracted by
GROBID, in the case of full scientific articles, and the actual constructs we wanted to
extract from a digitized dictionary. At its first extraction level, GROBID detects the main
blocks of a paper such as the header, the body, the references, annexes, etc. These main
parts will be further structured at the following level, like the references which will be
extracted in separate items and then parsed one by one to detect the titles, the authors
and the other publication details. By recalling the segmentation steps presented in the
previous section, there is a clear analogy between the case of a reference in a scientific
document and a lexical entry in a dictionary.

This correspondence is reinforced by the fact that GROBID relies on layout, as well as
text features, to perform the supervised classification of the parsed text and generates
a TEI compliant encoding where the various segmentation levels are associated with an
appropriate XML tessellation.

3.2 GROBID-Dictionaries

Due to the above-mentioned similarities, we undertook the adaptation of GROBID for
the case of digitized dictionaries in order to build a system, which uses the core utilities
of GROBID and applies them for lexical information processing. In building GROBID-
Dictionaries, we faced several challenges, the three major ones being detailed in the fol-
lowing.

3.2.1 TEI cascade modelling

After having fully encoded a lexical entry, the task became more specific and more chal-
lenging when it comes to defining the TEI structures to be extracted by each model. It is
a question of finding the appropriate mapping between the TEI elements and the labels
to be set for the models that share the task of structuring the text in cascade. In addition,
the process is at the same time constrained by the need to avoid having structures from
different hierarchy levels being extracted at once. In fact, the CRF models, as they could
be used from GROBID core, do not allow the labelling of nested text sequences. We clarify
this technical point by explaining how the sequence labelling process works in the case of
segmenting a lexical entry.

The following matrix represents the set of feature vectors corresponding to the lexical
entry condenser, which will be labelled by a first version of the "Lexical Entry" model.
The latter has the task of detecting the five main blocks in a lexical entry, if they exist. For
the sense information, the model has been trained to extract each parsed text sequence
representing a sense.

Each vertical column is a specific feature for all the tokens of the lexical entry and each
horizontal line corresponds to all the features of each token. For this model, a set of
features is going to be assigned to each token based on criteria we chose in the feature
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Figure 3: Sequence labelling using a first version of the "Lexical Entry" segmentation model

selection process. In the second phase, comes the role of the trained model to give a
prediction of a suitable label for each token, based on all its feature values. A structure
corresponds then to the sequence of tokens having the same label, where the I-Label marks
the beginning of a new sequence. Following this technique, it is obviously not possible in
this model to structure the example "le froid condense la vapeur d’eau"(see Figures 2 and
3) in the sense, since just one label is allowed per token. Therefore, the segmentation of
the examples should be delegated to another model that follows the current one.

3.2.2 Sample annotation

This is the phase where the previous rules will be applied on different instances, to anno-
tate data for training the models. An adjustment of the directives is necessary to make the
models more general, as soon as new instances appear to show the modelling limits of our
current guidelines. To illustrate such a case, we could take the example of the previously
defined "Lexical Entry" model and apply it to the lexical entry aid.

The TEI encoding for this entry with the "Lexical Entry" model is the following (see
Figure 5):

We could notice that the model presented in Figure 3 is no longer valid to perform the
segmentation of senses aggregated by part of speech (POS), with respect to avoiding
nested constructs. This issue could be fixed by having a first model that does not find the
boundaries of the senses of a part of speech in this level.

602



Figure 4: Lexical entry having more than one POS

Figure 5: Structured output of the "Lexical Entry" model’s primary version

This segmentation of main POS-aggregated senses should be performed by a second model,
called "Sense" for example, to find the limits of each sense as well as any grammatical
information, if any exists.

The labelling and extraction of the TEI structures should be performed further for the
other blocks, by following the same approach. For the case of the aid entry, a dedicated
model should be used to segment the <form> block by extracting the morphological and
grammatical information and decide about of the parent of the latter. In the current case,
the <gramGrp> will be the direct child node of the entry, since it carries information
about the sense of the entry given a POS, and not about the lemma. The <gramGrp>
block will, in its turn, have another specific model to structure its content. Figure 8 shows
the final output generated by our cascading model tree.

Annotation guidelines seem to be mandatory here to guide the process since an annotator,
especially with a linguistic or lexicographic background, could be easily biased by the TEI
practices and tags which are used differently in our cascading approach but will converge
in the final output. We noticed this issue after having lexicographers annotate a few
samples and we therefore, defined a first version of the guidelines,2 which we are actively
maintaining.

3.2.3 Feature selection

In this phase, the cumulated data will be used for generating features that will be used
by the models to discriminate between their labels. For the first model, we kept the

2 https://github.com/MedKhem/grobid-dictionaries/wiki/How-to-Annotate%3F
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Figure 6: Structured output of the "Lexical Entry" model’s adjusted version

Figure 7: Structured output of the "Sense" model

line based features used in GROBID’s first model.3 Our choice was based simply on the
assumption of the general nature of such features. Moreover, the experiments on several
samples showed a high and fast performance.

As explained in our approach, we tried to rely on a restricted list of features for the rest
of the models, where we drop the ones that are most likely to produce bias. We chose to
use features on the token level to structure the lexical information. For the first version
of our system, we are experimenting the use of one list with 16 features:4 8 based on the
text and the rest carrying the layout aspects of each token, such as the change of font or
line breaks.

4. Experiments
4.1 Models

The resulting models and their corresponding labels are the following:

• Dictionary Segmentation: This is the first model and has as its goal the segmenta-
tion of each dictionary page into three main blocks, where each block corresponds to
a TEI label: <fw type="header"> for information in the header, <ab type="page">
for all the text in the body of a page and <fw type="footer"> for footer information.

3 https://github.com/kermitt2/grobid/blob/master/grobid-core/src/main/java/org/grobid/core/
features/FeaturesVectorSegmentation.java

4 https://github.com/MedKhem/grobid-dictionaries/blob/master/src/main/java/org/grobid/core/
features/FeatureVectorLexicalEntry.java
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Figure 8: Final output of all the models

For the sake of simplicity, for training the models (see Section 4.3) we use: <head-
note> to refer to <fw type="header">, <body> referring to <ab type="page"> and
<footer> to refer to <fw type="footer">. But we respect the original labels for the
final TEI output.

• Dictionary Body Segmentation: The second model gets the page body, recognized
by the first model, and processes it to recognize the boundaries of each lexical entry
by labelling each sequence with <entry> label.

• Lexical Entry: The third model parses each lexical entry, recognized by the second
model, to segment it into four main blocks: <form> for morphological and grammat-
ical information, <etym> for etymology, <sense> for all sense information, <re> for
related entries.

• Form: This model analyses the <form> block, generated by the Lexical Entry model,
and segments its contained information. We have for the moment three labels for
this model: <orth> for the lemma, <pron> for pronounciation and <gramGrp> for
grammatical information, such as part of speech, gender, number, etc.

• Sense: The Sense model has two goals. First, to extract the grammatical information
<gramGrp>, that could exist. Second, to segment the first level senses, by structuring
them in <sense> sequences.

• Grammatical group: The last model in our temporary hierarchy has the of seg-
menting the grammatical information <gramGrp>, extracted by previous models

For each model, we reserved two extra labels: <pc> for punctuation such as separators
between text information or any markup text. A second label, <dictScrap>, is used to
contain any information that couldn’t be classified in one of the main labels of the model.
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Figure 9: Selected models

4.2 Lexical Samples

We carried out our experiments by applying our models to several dictionaries and given
the inconsistency that some presented, mainly due to digitization issues, we selected two
resources that represent several differences on many levels.

4.2.1 Digital dictionary

"Easier English Basic Dictionary" (EEBD, 2009) is a monolingual dictionary for English
which contains over 5,000 entries, published in 2009. For our experiments, we used the
370 pages containing the body of the dictionary. The version which we used, is a digitally
born one. In other words, no OCR processing has been performed to generate the resource
in its electronic format. As Figure 10 illustrates, the dictionary has a very modern and
basic layout and its markup system is spread over the entries to mark the transition of
the lexical information presented. We chose this digital sample to be our baseline, since
it contains very clean text and clear lexical information modelling.

4.2.2 Digitized dictionary

To take the experiments to the next level, we chose a dictionary that has been OCRized
and that encloses totally different lexical information. The dictionary was published in
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Figure 10: Two pages from EEBD side by side

1964 but later digitized. The version we have is of relatively good quality but still presents
some anomalies, where some text blocks are unextractable from the PDF.

The Fang-French & French-Fang dictionary (Galley, 1964) is a bilingual dictionary having
over 500 pages of lexical entries split into two parts. As Figure 11 shows, the markup
system is totally different from the EEBD, where field transition is mostly marked with a
change of font rather than with specific markers. For our experiments, we worked on the
first part, Fang-French Dictionary (FFD), containing over 390 pages.

4.3 Results

For the sake of conciseness, in this paper we present an evaluation of just four selected
models out of six implemented, for each dictionary. We used the benchmark module
provided by GROBID to measure the precision, recall and F1 scores.

In the following tables, token level gathers the measures for each different token, field
level is for each continuous sequence of the same label (so a field, a sequence of several
tokens which all belongs to the same labelled chunk, e.g. a lexical entry).

4.3.1 Dictionary Segmentation

For both dictionaries, we annotated seven pages, which we split into four for training and
three for evaluation.
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Figure 11: Two pages from FFD side by side

4.3.2 Dictionary Body Segmentation

For EEBD, we annotated five pages, which we split into 50 lexical entries for training and
27 for evaluation.

For FFD, we annotated seven pages with 91 lexical entries for training and 45 for evalu-
ation.

4.3.3 Lexical Entry

For EEBD, we annotated eight pages, which we split into 76 entries for training and 24
for evaluation.

For FFD, we annotated three pages, which we split into 47 for training and 24 for evalu-
ation.

4.3.4 Sense

For EEBD, we annotated six pages, which we split into 15 sense blocks for training and
15 for evaluation.

For FFD, we annotated four pages, which we split into 71 sense blocks for training and
19 for evaluation.
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Table 1: Evaluation of "Dictionary Segmentation" model on EEBD

Table 2: Evaluation of the "Dictionary Segmentation" model on FFD

4.4 Discussion

The evaluation on both dictionaries shows a high performance by the first and second
models to detect, respectively, the body part of a page and the boundaries of lexical
entries. The header and punctuation predictions for the first two models are however
low for the digitized sample. This could be explained by the quality of the text which
sometimes led to the generation of feature values that bias the learning.

For the "Lexical Entry" model, the performance of the system remains high for the ex-
traction of grammatical and morphological information on the English dictionary but
with low precision on the Fang-French sample. The detection of related entries, which are
contained only in the English dictionary, shows the limitation of our model to extract
these constructs with the actual setup. We hypothesize that it is related, firstly, to a lack
of annotated data and, secondly, to a lack of discriminative features. Nonetheless, the
model performs relatively well for sense block detection on the English dictionary and
slightly worse on the bilingual dictionary. The detection of the punctuation, representing
the transition between the main fields of the model, is also limited in this model.
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Table 3: Evaluation of the "Dictionary Body Segmentation" model on EEBD

Table 4: Evaluation of the "Dictionary Body Segmentation" model on FFD

The results of the final model reflect the reliability of our features to structure the sense
information, when it has to focus on the boundaries of senses. But for the case of the
senses aggregated by POS, more discriminative features should be added.

5. Related Works

This work takes place within the context of studies on lexicography and digital humanities
fields, targeting the exploitation of digitized dictionaries. Most previous research (Khe-
makhem et al., 2009; Fayed et al., 2014; Mykowiecka et al., 2012) remained limited to the
costly manual elaboration of lexical patterns, based on observing the organisation of the
lexical information in a specific sample.

There have been, however, strong pointers to the usefulness of machine learning tech-
niques, CRF in particular, to address the issue of decoding the complexity of lexical
resources. Crist presented experiments for processing and automatically tagging linear
text of two bilingual dictionaries, using CRF models. The goal has been purely experi-
mental, proving the appropriateness of CRF for tagging tokens in digitized dictionaries.
His exhaustive study also stressed the other processing issues, which are very important to
the effectiveness and the evaluation of any parsing technique. Another recent study (Bago
& Ljubešić, 2015), has addressed the issue of using CRF models to perform automatic
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Table 5: Evaluation of the "Lexical Entry" model on EEBD

Table 6: Evaluation of the "Lexical Entry" model on FFD

language and structure annotation in a multilingual dictionary. The technique again has
a very high accuracy in much less time than would be required for manual annotation.

Both of the mentioned machine learning approaches apply one CRF model to label the
all the tokens of a dictionary. In such a bottom-up technique, the learner is overwhelmed
by the number of labels to choose from at once, which increases the number of prediction
errors. A huge amount of training data is also required per model to cover middle and
high complexity dictionaries.

The novelty in our approach is that we reduce the scope of each bottom-up model by
splitting the task over different models that process the lexical information in a top down
fashion. Moreover, our system does not stop at the level of tagging the tokens, but enables
the construction of blocks of lexical information in a format that facilitates the processing
as well as the exchange of the output.
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Table 7: Evaluation of the "Sense" model on EEBD

Table 8: Evaluation of the "Sense" model on FFD

6. Conclusion and Future Work

GROBID-Dictionaries in its first version has shown the promise of CRF cascading models
to structure digitally born and digitized dictionaries, independently of the language and
lexicographic style. Our experiments had the goal of, firstly, verifying our assumptions
and, secondly, highlighting the strengths and the limitations of the implemented models.
It is obvious that more focus should be given to the feature selection process, in order to
reinforce the prediction of the models for certain labels and fields. Feature tuning should
also be applied on larger annotated data with more varied instances. Therefore, we are
planning to build a smart annotation tool with strong guidelines, to simplify the annota-
tion process.

Our open source system could be used, after more tuning, to radically speed up the struc-
turing of many digitized dictionaries in a unified scheme or to measure the structurability
of OCRized lexical resources.
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