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Abstract
This demo introduces Lexonomy www.lexonomy.eu, a free, open-source, web-based dictionary writing and pub-
lishing system. In Lexonomy, users can take a dictionary project from initial set-up to final online publication in
a completely self-service fashion, with no technical skills required and no financial cost.
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1. Introduction

Lexonomy is a web-based platform for writing and publishing dictionaries. Its mission
is to be an easy-to-use tool for small to medium-sized dictionary projects. In Lexonomy,
individuals and teams can create a dictionary, design an arbitrary XML structure for the
entries, edit entries, and eventually make the dictionary publicly available as a ‘microsite’
within the Lexonomy website. Lexonomy exists in order to lower the barriers of entry
into modern born-digital lexicography.1 Compared to other dictionary writing systems2 it
requires no installation or set-up, expects no knowledge of coding or programming,3 and
is free from financial cost. It is simply a website where lexicographers can sign up and
start working.

Each Lexonomy user logs in with a user name and password. Users are allowed to create an
unlimited number of dictionaries. The process of creating a dictionary consists of deciding
what it should be called (this can be changed later) and what its URL should be, for
example www.lexonomy.eu/mydictionary. This is the address at which the dictionary will
eventually be publicly viewable, if and when its creators decide to make it public. By
default, newly created dictionaries are not publicly viewable.

Once a dictionary has been created, the user who created it may add additional users and
these can all start adding and editing entries. The rest of this introduction to Lexonomy
will unfold in a logical sequence. Fist we will introduce features related to dictionary
planning: specifying the structure of entries etc. Second, we will look at dictionary
editing with Lexonomy’s built-in XML editor. Third, we will show how Lexonomy can
be used as a platform for online dictionary publishing.

2. Entry structure

Dictionary entries in Lexonomy are stored as XML documents and their structure is
defined by a schema which is unique to each dictionary. Users can choose a predefined
schema while creating a new dictionary (the options are monolingual dictionary, bilingual

1 One implication of this is that Lexonomy is not a good match for retro-digitized dictionaries.
2 The reader is kindly asked to read what follows as a mission statement rather than an empirically
verified fact. A thorough comparison of existing dictionary writing systems is beyond the scope of this
paper.

3 Familiarity with XML is a plus but Lexonomy users are not expected to be able to hand-code XML.
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dictionary and so on) and customize it later or, if they prefer, they can start from a
completely blank schema.

A Lexonomy schema is similar to a DTD (Document Type Definition): it lists the XML
elements which are allowed to appear in the entries and specifies how they may be nested,
how many of them must or may be there, which attributes they may or must have, what
their values may be and so on. In a conventional dictionary writing system the schema
would typically be hand-coded by an IT specialist. Lexonomy, on the other hand, offers a
visual schema editor where users can define the structure of their entries without having
to hand-code anything.

The left-hand side of the screen (Figure 1) contains a list of XML elements and attributes.
The tree structure indicates how they may be nested, such that the top-most element will
be the root element of every entry. It is up to the user to decide what the elements and
attributes are called and how they are nested. The right-hand side of the screen then
contains detailed settings for the selected element or attribute: this is where the user
specifies what child elements or attributes the element may contain, in what order, how
many of each, and what content they are allowed to hold.

2.1 Element content

The content of each element can be constrained by making a choice from these options:

• Child elements: elements of this name will contain other elements.
• Text: elements of this name will contain plain text.
• Text with markup: elements of this name will have mixed content (= plain text

interlaced with other XML elements).
• Value from list: elements of this name will contain a value from a predefined list.
• Empty: elements of this name will have no content.

Depending on the type of content chosen, the schema editor will offer different additional
options. If the content is Child elements or Text with markup, we can specify the child
elements as in Figure 1. The min and max numbers control how many instances of the
child element must be present inside the parent element: min = 1 and no max means
‘one or more’, max = 1 and no min means ‘none or one’, no min and no max means
‘none, one or more’, and so on. We will see in a later section how Lexonomy imposes these
constraints while the lexicographer is editing an entry.

If the element’s content is set to Value from list, we can specify the values on that list,
along with optional captions (Figure 2). We will see later how Lexonomy’s XML editor
makes use of this setting by giving the lexicographer a menu to choose from when inputting
an attribute value. The captions are used instead of values for visualization to end-users.

2.2 Attributes

Besides child elements, XML elements in Lexonomy can have XML attributes. When
specifying that an element can have an attribute, we can declare the attribute optional or
obligatory, as in Figure 1. Further settings for attributes are a subset of those for elements:
an attribute’s content can be either Text or Value from list (Figure 3).
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According to the XML standard,4 the attributes of an element are considered unordered:
the order in which they appear in the XML document is insignificant. But, as a convenience
to human users, Lexonomy makes sure that attributes always appear in the order in which
they are listed in the schema.

2.3 Element nesting

It is possible in Lexonomy for elements of a certain name to appear as children under
parent elements of more than one type. For example, if your dictionary has separate
elements for senses and subsenses, say <sense> and <subsense>, they can both have
child elements called <definition>, <example> etc. (Figure 4). Element nesting can be
recursive, too: it is possible to allow <sense> elements to appear inside <sense> elements
(Figure 5).

2.4 Expressivity of the schema formalism

The schema formalism used internally by Lexonomy and exposed through its schema
editor is approximately as expressive as a DTD (Document Type Definition). The only
major point of difference is how child elements are ordered. In Lexonomy, child elements
(under parents whose content is Child elements) must appear in exactly the same order
in which they are given in the schema, while a DTD allows more flexibility in this regard.

3. Entry editing
Once the structure has been finalized lexicographers can start working on the actual
entries. Lexonomy’s entry browser and editor offers a familiar interface with an entry list
on the left-hand side and entry details on the right-hand side (Figure 6). Clicking the Edit
button opens the entry in Lexonomy’s built-in XML editor (Figure 7).

The XML editor in Lexonomy5 emulates the look and feel of a text editor with syntax
highlighting, code folding and autocompletion. It is, however, not a text editor: lexicog-
raphers edit XML by clicking on things, selecting options from context menus, selecting
attribute values from picklists, dragging and dropping elements around and so on. This
serves the dual purpose of making the lexicographer aware that he or she is manipulating
XML while simultaneously making it impossible for them to corrupt the entries by en-
tering non-well-formed XML. In fact, no knowledge of XML syntax is needed for working
with Lexonomy: the angle brackets and other formalities of XML syntax are merely a
kind of ‘decoration’. Users who are not comfortable with the XML notation can turn it
off completely and switch Lexonomy into laic mode (Figure 8).

3.1 Knowing where to click

Almost everything in the XML editor is clickable:

• Click the name of an element (it its opening or closing tag) to get a menu with
options for adding child elements, for adding optional attributes, and also for re-
moving the element itself. The options offered are in accordance with the schema.

4 https://www.w3.org/TR/REC-xml/#attdecls
5 The XML editor is actually a separate software product called Xonomy: www.lexiconista.com/xonomy

664

https://www.w3.org/TR/REC-xml/#attdecls
www.lexiconista.com/xonomy


• Click the name of an attribute to get a menu with an option to remove the attribute.
• Click the value of an attribute to get a pop-up box for editing the value. This will

be either a text box or a menu to choose from a list, as per the schema.
• Click a text node (= a stretch of text between tags) to get a pop-up box for editing

the text. Again, this will be either a text box or a menu to choose from a list, as
per the schema.

To change the order of elements (for example to re-order senses) or to move an element to
a different location inside the entry (for example to move an example sentence from one
sense to another) you can use the ‘drag handle’ (six grey dots) beside the opening tag of
each element. As you drag this with the mouse, Lexonomy will show you ‘drop targets’
(grey spots) in different places in the entry: these are locations where you can legally drop
the element you are dragging (‘legally’ here means ‘the schema allows it’).

3.2 Keyboard navigation

A frequent complaint by users of web-based editing interfaces6 is that the work is slow
because there is ‘too much clicking’ involved. For increased productivity and ergonomics,
Lexonomy makes it possible for lexicographers to perform the most repetitive tasks with
the keyboard as well as the mouse. While editing an entry in the XML editor, the following
keyboard shortcuts are available:

• The cursor keys up and down, left and right to navigate around the hierarchical
structure of the entry, from tag to tag, from attribute to attribute, and so on.

• When an element has the plus sign next to its opening tag, Ctrl + right can be
used to expand it and Ctrl + left to collapse it again.

• Press Enter to open the menu or pop-up editor associated with the currently
highlighted element, attribute, attribute value or text node. Then press Esc to
close it again.

• When a pop-up menu is open, use the cursor keys up and down to move up and
down the menu, and Enter to select an item from the menu.

• If the entry is very long and has a scrollbar next to it, you can use Ctrl + up and
Ctrl + down to scroll the entry up and down.

These keyboard shortcuts work when the entry editor is focused. If it is not focused (you
will know because the keyboard shortcuts are not working) you can press Alt + right
at any time to focus it. Similarly, you can press Alt + left at any time to focus the
entry list on the left hand side of the screen. When the entry list is focused, the following
keyboard shortcuts can be used:

• The cursor keys up and down to move up and down the list.
• Enter to the currently highlighted entry.
• Ctrl + up and Ctrl + down to scroll the entry list up and down.

Last but not least, the following keyboard shortcuts are available at any time, regardless
of which side of the screen is focused:

6 Based on the author’s long career in building, and dealing with users of, such interfaces.
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• When an entry is being displayed on the right-side of the screen, you can press
Ctrl + Shift + E to open it for editing: this is the same as pressing the Edit
button. Then press Ctrl + Shift + E again to cancel editing and switch back to
viewing: this is the same as clicking the Cancel button.

• Ctrl + Shift + S to save the entry being edited: this is the same as clicking the
Save button.

• Ctrl + Shift + N to start creating a new entry: this is the same as clicking the
New button.

• Ctrl + Shift + T to move move the cursor into the search box in the top left-
hand corner of the screen.

In all keyboard shortcuts mentioned here, Mac users can (but do not have to) substitute
the Cmd key for the Ctrl key.

3.3 Editing inline markup

One area which tends to be particularly troublesome for XML editors is ‘mixed content’:
situations in which an XML element contains a mixture of text and other XML elements.
Here is how Lexonomy handles it. If the schema says that the content of an element is Text
with markup, Lexonomy lets the lexicographer edit its text as if it were normal plain text:
clicking it opens a pop-up text box. Additionally, a thin grey line appears underneath the
text and the lexicographer can click on this to select stretches of text and annotate them
with inline XML markup. When a stretch of text is selected, a menu will appear with
options for ‘wrapping’ that selected text with XML elements (see Figure 9). The options
on that menu come from the schema. Once markup has been inserted, it is again possible
to click the inline element and a menu will appear with an option to remove (‘unwrap’)
the element.

3.4 Entry validation

While working with an entry, the options that appear in menus and dialogs conform to the
dictionary’s schema: users are only allowed to add child elements to parents that may have
them, and so on. When adding a new element into the entry, Lexonomy will automatically
pre-populate the element with everything it needs to have, as per the schema: obligatory
attributes, the correct number of child elements and so on. The same happens when
creating a new entry: Lexonomy will automatically launch with a ‘prefabricated’ blank
entry which conforms to the schema as much as possible: for example, if your schema
says that every <entry> must have at least one <headword>, then every new <entry>
will come with one (empty) <headword> already inserted.

As you make changes to the entry, Lexonomy is constantly validating it against the
schema. If you make an edit which is not allowed by the schema, such as insert more
child entries than the schema allows, Lexonomy will notify you with a small warning
triangle next to the offending element or attribute (Figure 10). As a general rule, how-
ever, Lexonomy’s approach to entry validation is permissive: it gives warnings but it will
not prevent you from saving an invalid entry (= an entry that does not conform to the
schema).
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4. Advanced settings

Each dictionary hosted in Lexonomy comes with an extensive configuration screen (Fig-
ure 11). Many settings on this screen are of an advanced nature and we will explore some
of those in this section.

4.1 Where is the headword?

In Lexonomy, dictionary authors themselves decide what names the XML elements and
attributes in their entries will have. There is no requirement to use a standard vocabulary
of names such as <entry> or <headword>, these can have any names at all, including
names in other languages than English.7 But, at the same time, Lexonomy needs to
understand what (at least some of) those element names mean. For example, it needs to
know where to find the headword in each entry.

The Headwords area on the configuration screen is where the dictionary administrator can
make such information explicit (Figure 12). Lexonomy uses this information for various
things, including listing the entries by headword in the entry list on the left-hand side of
the editing screen. If you make no selection here, Lexonomy will try to guess where the
headword is by simply taking the first non-empty text node it finds in each entry.

In many dictionaries, headwords are ‘annotated’ with additional elements such as homo-
graph numbers and part-of-speech labels. These can be made to appear in the entry list
by selecting them in the Headword annotations section. Headwords are displayed in bold
fond and are searchable (more about searching later), while annotations are displayed in
non-bold font and are not searchable, but are taken into consideration for alphabetical
sorting.

4.2 Alphabetical order

When listing entries by headword, the question of alphabetical order unavoidably comes
up. Alphabetical order depends not only on the alphabet used (Latin, Cyrillic etc.) but
also on the language (e.g. ä is sorted right after a in German but at the end of the alphabet
after z in Swedish) and, in extreme cases, even on personal preference. Lexonomy takes
an agnostic view and allows dictionary authors to set up their own alphabetical order by
simply inputting a linebreak-delimited sequence of characters into the Headwords area of
the configuration screen (see Figure 12; characters that appear on the same line with a
space between them are sorted as if they were the same). There is a default sort order
which dictionary administrators can customize, for example by moving characters around
or by adding characters for their language. Alphabetical sorting in Lexonomy is always
case-insensitive.

The sorting algorithm supports digraphs, that is, sequences of characters which are sorted
as if they were a single character, such as the Czech ch which sorts between h and i or
the Welsh ng which sorts between g and h. All the dictionary administrator needs to do
is include the digraph in the correct place in the alphabetical order, e.g. ch on a separate
line between h and i.

7 The names of XML elements and attributes in Lexonomy can even contain non-ASCII characters, such
as extended Latin characters and characters from other alphabets.
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4.3 Search

Another thing which is under the dictionary author’s control is the extent to which the
dictionary is searchable by typing some text into the search box (in the top left corner of
the editing screen, and also on the dictionary’s public home page if the dictionary is pub-
licly viewable). By default, searching means searching for headwords, and typing anything
into the search box will return a list of entries whose headwords contain that sequence
of characters. But dictionary administrators can search-enable other XML elements too,
and this is done in the Search area of the configuration screen (Figure 13). For example,
if yours is a bilingual dictionary and if you would like reverse searches to be possible, you
can search-enable the elements containing the translations. Then, when you search for a
sequence of characters, Lexonomy will return a list of entries where either the headword
or one of the translations match (Figure 14).

Search in Lexonomy is always based on simple substring matching: when you search for go
you will get entries where this sequence of characters occurs in one of the search-enabled
elements, regardless of where in the element it is: gorge, mango, mongoose as well as go
itself. In other words, search in Lexonomy is not linguistically ‘clever’: it is aware of neither
word boundaries nor word inflection (e.g. a search for bring does not match brought), as
these features are language-dependent. One implication of this is that Lexonomy’s search
functionality is really only suitable for short strings of text (such as headwords and their
translations) but will not perform as well as full-text search (e.g. for example sentences
or for definitions).

5. Entry formatting

Beside the schema designer and the entry editor, a third crucial feature of Lexonomy
is its formatting designer. This is where users can design the visual appearance of their
entries. In a conventional dictionary writing system this task would typically be achieved
by hand-coding an XSL and/or CSS stylesheet, and an IT specialist would be required
for the job. In Lexonomy, users can design the look of their entries themselves, without
knowledge of any stylesheet language.

Similarly to the schema editor, the user sees a hierarchical list of elements and attributes
on the left-hand side of the screen, while the right-hand side is where he or she sets
the formatting properties of the selected element or attribute (Figure 15). A randomly
selected entry is shown on the right on which all formatting changes are previewed in real
time to help lexicographers understand the visual impact of their choices.

Under Visibility you select whether the element or attribute is shown at all (the default
is Shown for elements and Hidden for attributes), and under Layout you select whether
the element is separated from other elements by line breaks or not. The rest of the screen
is for setting individual formatting properties of the element or attribute:

• Separation from other content: the options are whitespace or none. For inline ele-
ments whitespace means that there is a space character between it and any elements
that precede or follow it. For line-breaked elements whitespace means there is an
additional amount of vertical space (approximately half the height of a line of text)
above and below.
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• Indentation and bulleting: the options include various kinds of bullets (round,
square-shaped etc) and various sense numbering patterns. It goes without say-
ing8 that senses in Lexonomy are numbered automatically at display-time and
that sense numbers should not be included in entries explicitly.

• Box border : the options are dotted, thin and thick for putting a visual border around
the element.

• Background colour : the options are none, yellow, blue and grey.
• Outer punctuation: these indicate how the element should be separated from other

elements by punctuation such as commas, semicolons or brackets.
• Text colour : the options are none, red, blue, green and grey.
• Text slant: the options are none and italic.
• Text weight: the options are none and bold.
• Inner punctuation: the options are the same as outer punctuation above. The dif-

ference is that inner punctuation is inserted in the same colour, slant and weight
as the content while outer punctuation is not: it is ‘outside’ the scope of font
formatting.

5.1 Expressivity of the formatting formalism

Depending on your perspective, the formatting properties available in Lexonomy may
seem either carefully curated or inconveniently constrained. The truth is a bit of both.
Lexonomy’s formatting mechanism is certainly not nearly as expressive as stylesheet lan-
guages such as XSL and CSS. On the other hand, the full gamut of XSL and CSS would
probably be too confusing for the average lexicographer and would likely lead to ama-
teurish misuse. Lexonomy wants all dictionaries to look good in it, but also, it wants
lexicographers themselves to be in control of the formatting of their dictionaries – this
calls for simplification. Time will tell whether this level of simplification is the right one.

6. Online publishing
Finally, a dictionary can be made available to the public as a ‘micro-site’ within Lexon-
omy, e.g. www.lexonomy.eu/mydictionary. This does not require any complicated work,
the user merely needs to change a few settings in the dictionary’s configuration section
(Figure 16).

When a dictionary is made public, Lexonomy gives it a simple user interface which allows
the dictionary to be searched and browsed (Figure 17). The home page offers a random
selection of headwords and a search box. Search here works exactly like it does in the edit
screen. Each individual entry has its own page with its own URL, and the headword’s al-
phabetical neighbourhood is displayed on the side (Figure 18). The interface is responsive
(therefore mobile screen-friendly) and optimized for indexing by search engines.

When a dictionary has been made public, the public interface is of course viewable by
anybody, regardless of whether they are currently logged into Lexonomy or not. If logged
in, and if the user has editing access to the dictionary, an Edit link is shown beside the
dictionary title. When a dictionary has not been made public yet, the dictionary’s home
page is essentially the same but has only the dictionary’s name and optional description
(both supplied by the dictionary author) and nothing else.

8 But let us say it anyway.
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7. Conclusion

This concludes our brief introduction to Lexonomy. We have seen how Lexonomy can
be used to develop a dictionary from initial set-up to final online publication. Hopefully
the reader is now convinced that Lexonomy is a good home for small-to-medium sized
dictionary projects. What remains is to mention a few administrative and house-keeping
matters.

Lexonomy was originally created as a training tool for a lexicographic training event or-
ganized by the European Network of e-Lexicography9 in May 2016 in Ljubljana, Slovenia.
The version of Lexonomy presented here has been completely rewritten since then, con-
tains several new or improved features, and the author believes it is fit for real-world
applications.

Lexonomy is and will continue to be open-source software, licensed under the MIT Li-
cence.10 The source code is hosted in Lexonomy’s GitHub repository.11 Teams who do not
want to use Lexonomy’s ‘home’ installation at www.lexonomy.eu can download the source
code, set up a local installation on their own server and customize it to their requirements.
Lexonomy is written in Node.js,12 a technology which makes it capable of running on both
Linux and Windows servers.

Lexonomy will continue to be actively developed over the next number of years, thanks
partly to financial support from Lexical Computing, the makers of Sketch Engine,13 a
popular corpus query system.

This work is licensed under the Creative Commons Attribution ShareAlike 4.0 Interna-
tional License.

http://creativecommons.org/licenses/by-sa/4.0/

9 http://www.elexicography.eu/
10 https://opensource.org/licenses/MIT
11 https://github.com/michmech/lexonomy
12 https://nodejs.org/
13 https://www.sketchengine.co.uk/
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Figure 1: Entry schema editor

Figure 2: Specifying the values that can appear in an element
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Figure 3: Specifying the content of an attribute

Figure 4: Allowing elements of a given name to appear under more than one type of parent
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Figure 5: Recursive element nesting

Figure 6: Browsing and viewing a dictionary
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Figure 7: Entry editor

Figure 8: Entry editor in laic mode
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Figure 9: Inserting inline markup

Figure 10: XML validation
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Figure 11: Configuration screen

Figure 12: Headwords area of the configuration screen
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Figure 13: Search area of the configuration screen

Figure 14: Example of search results
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Figure 15: Formatting designer

Figure 16: Public access settings
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Figure 17: The public homepage of a dictionary

Figure 18: The public page of a dictionary entry
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