Text Visualization for the Support of Lexicography-Based Scholarly Work

Shane Sheehan, Saturnino Luz

Usher Institute of Population Health Sciences & Informatics, The University of Edinburgh, UK
E-mail: Shane.Sheehan@ed.ac.uk, S.luz@ed.ac.uk

Abstract

We discuss three visualisation techniques for corpus analysis, Concordance Mosaic, Metafacet and ComFre, and explore the design rationale based on a characterization of the corpus linguistic domain. The Concordance Mosaic visualization is designed for the investigation of collocation patterns. It encodes word positions in a concordance list in a manner that emphasizes quantitative analysis of frequency or collocation statistics. Metafacet provides an interface for investigating concordance lists through the lens of meta-data. When combined with the Mosaic it provides a powerful technique for investigating collocations in the context of meta-data. ComFre can be used to compare word frequencies between two corpora of different size, it has potential use as a technique for identifying terms which are representative of the corpora under investigation. The domain characterization shows how the visualizations were designed with corpus linguistic methodologies at the core. It consists of a task analysis based on the methodology outlined in Sinclairs' *Reading Concordances: An Introduction*, and the analysis of methodology case studies from language scholars.

Keywords: visualization; concordance; frequency; meta-data; collocation

1. Introduction

Concordance analysis is a core activity of scholars in a number of humanities disciplines, including corpus linguistics, classical studies, and translation studies, to name a few. Through the advent of technology and the ever increasing availability of textual data this type of structured analysis of text has grown in importance (Sinclair, 1991; Bonelli, 2010).

In concordance analysis, every corpus occurrence of a keyword of interest is displayed along with its context. The context is an ordered list of words which precede and follow the keyword. The analyst then seeks to discover the linguistic properties of the keyword and the contextual patterns which predict them by observing the frequencies of occurrence, in the keyword’s context, of words (collocations), word combinations, parts of speech (colligations) or the various other lexical classifications (Sinclair, 2003; Scott, 2010).

The most widely used tool in this kind of analysis is a form of tabular visualization known as keyword-in-context (KWIC). The creation of concordances through the
keyword in context indexing technique was first proposed by Hans Peter Luhn in the 1950’s (Luhn & Division, 1959). KWIC displays, enhanced in interactive systems by features such as search, context sorting and statistical analysis, are widely used not only by academics and scholars, but also by professional translators and post-editors (Karamanis et al., 2011; Doherty et al., 2012).

While these KWIC interfaces provide support for exploring the linear structure of the concordance, word frequency and other statistics rarely form any part of the visualization. This statistical information is essential to the work of the text analyst. However, in the presence of large corpora, it is difficult to explore statistical regularities armed solely with the KWIC display. External statistical tools are often used to complement the concordance. We argue that integration of this analysis step into the concordance visualization fits in well with the task structure of corpus linguists, and will be of great benefit to the text analyst.

There have been calls for the creation of more advanced concordance analysis tools (Rockwell, 2003), and advancements such as Sketch Engine have provide new analytic paths (Kilgarriff et al., 2014). However, the adoption of visual analysis tools for concordance analysis is very limited. That does not mean that visual representations of the concordance do not exist, it is simply that they have not been adopted by analysts or integrated into analysis tools.

It has been suggested that the publication of more domain characterization papers for visualization would be beneficial for tool adoption (Munzner, 2009). It is at this level of design that relevant problems are identified, and creating visual solutions to problems that are not relevant to domain experts is wasted effort. Publication of domain characterization should also encourage wider conversation and help identify and characterize overlooked areas of investigation.

In this paper we outline the functionality of three corpus analysis tools, Concordance Mosaic, Metafacet and ComFre. Concordance Mosaic displays positional collocation statistics for any corpus word or regular expression. Interactive restructuring of a concordance browser is enabled through the interface. This restructuring combined with colour highlighting of the concordance lines creates a powerful technique for investigating significant collocation patterns.

The MetaFacet visualization enables exploration of corpora through the lens of meta-data. Keyword frequency can be investigated across any combination of meta-data attributes associated with corpus source files. The concordance browser and Mosaic can be interactively filtered by these attribute combinations, allowing investigation and comparison of lexical information across combinations such as date, author and topic.

ComFre is a tool for corpus frequency comparison, which provides a method of comparing corpora of different size in a visual and statistically valid manner.
These visualizations were designed in close collaboration with language scholars with an emphasis on translation studies. The design rationale is rooted in a domain characterization which encompasses a literature-based task analysis and ethnographic studies of methodology. Relevant portions of this domain characterization are presented following the visualization descriptions.

2. Modnlp plugins

The visualization tools are developed as plugins for the open source concordance browser included in the Modnlp toolkit. Significant contributions were also made to the core Modnlp project to better integrate the plugins and enable interactions with the concordance list. Modnlp provides a modular architecture and tools for natural language processing, it comes with an indexers, feature rich concordance browser and server implementation (Luz, 2011, 2000). Previous versions of the Modnlp software have been used by the European Parliamentary Comparable and Parallel Corpora project\(^1\) (ECPC) and by the Translational English Corpus\(^2\) (TEC). The toolkit is currently being developed as part of the Genealogies of Knowledge project\(^3\) (GoK) and the plugins are fully integrated into the GoK corpus browser.

The goal when developing these plugins is to improve the efficiency and capability of corpus linguistic methodologies and tools. Here we present the visualization plugins from a purely functional perspective to provide an overview of the capabilities and context for later discussion of the relevance to lexicography and corpus linguistics.

The English GoK corpus is used to exemplify the usage of the visualizations. This corpus is quite varied, it includes translations and re-translations of texts from antiquity as well as modern internet blogs and magazine articles. The corpus is designed to enable researchers to trace the trajectory of key concepts as they enter different cultural and temporal spaces, predominantly but not exclusively through the mediation of various forms of translation. The corpus is specialized and the examples used may not exhibit general lexical properties due to the issues of representativeness in relation to frequency (Summers, 1996).

In the discussion of the visualization functionality we do not try to analyse or interpret the linguistic properties of the words or corpus. Any analysis choice or comments on linguistic properties are to help clarify the examples and should not be viewed as an attempt to perform corpus analysis.

\(^1\) http://www.ecpc.uji.es/
\(^2\) http://genealogiesofknowledge.net/translational-english-corpus-tec/
\(^3\) http://genealogiesofknowledge.net/
2.1 Concordance Mosaic

The first visualization designed was the Concordance Mosaic. This visualization has the concept of keyword in context at its core. The visualization is designed to display word statistics per position extracted from a concordance list. The underlying graph based abstraction of the concordance list and an early prototype were presented in an earlier work (Luz & Sheehan, 2014).

Using the visual metaphor of the KWIC, Mosaic represents positions relative to the keyword as ordered columns of tiles. The mosaic is created using a space-filling approach introduced by Luz and Masoodian (2007), where each tile represents a word at a position relative to the keyword, and the height of each tile is proportional to the word statistic at that position. In its simplest form each tile represents the frequency of a word at a position relative to the keyword. In Figure 1 the Mosaic of the keyword “hazard” is presented along with the concordance list for the 335 occurrences in the corpus. The Mosaic is set to display column frequencies. Due to the strong visual metaphor of KWIC it should be clear the word “to” is the most frequent word immediately to the left of the keyword (K-1) and also at positions K-2 and K-3. Hovering over any tile will display a tool-tip with the word count and frequency at the position, this relieves the need for manually counting or performing additional searches to retrieve position based word frequencies.

Words with high corpus frequency tend to dominate the positional frequency distributions for most keywords. The second view Mosaic affords is a stop-word filtered view of column frequency. The columns are filtered using a threshold based on corpus frequency. In Figure 2, the stop-words are removed and column heights are no longer uniform. The reduction in a column’s height represents the density of stop-word frequency at that position. At K-1 we notice stop-words were the most frequent for any position. At K-1 the next most frequent word after stop-words is “moral”. Tile heights and thus frequency are comparable across positions, from the Mosaic we can see that “moral” at position K-1 and “run” at position K-2 have similar positional frequencies.

The mosaic and concordance browser have been presented together but we have not yet commented on the interaction. The data is linked to both interfaces, and interactions with the mosaic can be reflected on the concordance list. In Figure 2 the tile for the word “run” at K-2 has been left clicked with the mouse. This interaction colours white any position word tiles on the Mosaic that are found in concordance lines, including “run” at K-2.
Figure 1: Concordance Mosaic for keyword “hazard”. Right click selection of “battle” at position K+3.
Looking at the Mosaic we see that at least one concordance line with “run” at position K-2 also contains “battle” at K+2. The concordance list has been sorted at the selected position and scrolled automatically to the selected word. For emphasis the sorted position words are coloured red and the selected word coloured pink. The horizontal concordance lines for the selected word are coloured blue for easy identification. In addition, any occurrences of the selected word at other positions are also highlighted in pink, and as you investigate the entire list it is possible to get a sense of global patterns which may not be restricted to the selected position. In Figure 3 the selection of the word “to” at K-1 and a sample of its many occurrences at other positions are visible.
Figure 3: Concordance Mosaic for keyword “hazard”. Global view of MI3 is selected. Right click selection of “to” at position K-1.

The second click is activated by right clicking on a Mosaic tile. This interaction has the same effect on the concordance list as the left click interaction but differs in its change to the Mosaic. Right clicking on a Mosaic tile highlights other occurrences of the word at all positions in the mosaic. This is useful for getting a better sense of the frequency distribution of a word across all positions in a concordance list. In Figure 1, “battle” at K+3 is selected. Tiles representing “battle” at positions K+1 K+2 and K+4 are coloured white for easy identification. In the concordance list we can see one of these additional occurrences of “battle” at K+2 highlighted in pink.

Positional word frequency is a fundamental property of the concordance list, but other quantitative measures are used extensively to reason about collocations. Statistics such as Mutual Information (MI), Cubic Mutual Information (MI3) and Z-Score are often used to investigate collocation statistics in a window surrounding a keyword (Manning...
This windowed approach most often groups word positions together and presents the results as a list. However we wish to preserve the positional aspect of these statistics and present them as a Mosaic. Figure 3 shows the global collocation strength view of Mosaic. Global in this setting means the tiles can be compared across positions and have not been scaled to fill the space. This contrasts with Figure 4 where the local view of collocation strength makes each column full height, and this allows easier investigation of each position but removes the ability to compare tiles across positions.

In the Global view shown in Figure 3 the column heights give an indication of the word positions relative to the keyword where the statistical association is highest. Each individual tile’s height is proportional to the value of the statistic calculated for that

![Figure 4: Concordance Mosaic for keyword “hazard”. Local view of MI3 is selected. Right click selection of “moral” at position K-1. Concordance list scrolled horizontally to reveal filenames.](image-url)
word at that position. In this example MI3 is selected as the statistic under investigation. The strongest association based on MI3 is the word “regulatory” at K+1. It may be worth noting that the stop-word “to” is shown to have a strong association at K-1.

If we investigate the concordance lines of the tile “moral” at K-1 (since it has both high frequency and MI3 score) we find that all but two of its 14 occurrences originate from the same file, see Figure 4.

2.2 Metafacet

The Modnlp concordance browser presents the file-names along with concordance lines. An interaction is available in the browser to view meta-data about each file and section on a line by line basis. However, this is a time consuming and challenging process for the corpus analyst if the meta-data of a large number of lines need to be investigated. The Metfacet plugin is a proposed solution to this issue and provides interactive filtering of the concordance list and the Mosaic using all available meta-data facets.

The Metafacet interface is quite simple, and uses a horizontal bar chart to display concordance line frequency per meta-data attribute. An attribute is a possible value that a meta-data facet can take. As an example “Plato” is an Attribute of the Facet “author”. A drop-down list is used to choose which facet is displayed and the bars are sortable by frequency or lexicographical order and the window can be filtered using a sliding scale to view a smaller portion of the attributes. This conforms to the common visualization design practice of first presenting an overview, and then more detail on demand (Shneiderman, 1996).

In Figures 5 and 6 the Metafacet interface for the concordance of “hazard” is shown for the facet “author” sorted by frequency. Figure 6 shows a window of this data focusing on the nine most frequent attributes of this facet in the concordance list. The hover interaction is shown for “Thucydides”, who is the most frequent author of the keyword “hazard” in the GoK corpus, with a total of 94 concordance lines out of a list of 335.

Metafacet when used alone provides an interface to quickly explore keyword distribution across meta-data attributes. By interactively combining it with the concordance list and Mosaic we can navigate the corpus in a new way, viewing the concordance as attributed sets of collocations that can be interactively explored. In Figure 7 the stop-word Mosaic shown in Figure 2 is filtered to remove any concordance lines with the attribute “book” form the “format” facet. Books account for the majority of the concordance lines, and removing them from the concordance significantly changes the collocation structure of the Mosaic. During interactive filtering the current selection can be kept by pressing the “Update Bars” button, and this will refresh the Metafacet window with filtered concordance.
Figure 5: Metafacet interface showing all available meta-data facets. Fully zoomed out but obscured view of all authors in the concordance of “hazard”.

Figure 6: Metafacet zoomed to most frequent authors. Hover interaction displaying attribute name, associated concordance lines and total concordance lines for “hazard”.
Figure 7: Left click interaction filtering out any lines form the concordance associated with the attribute Format= “book”. Both Concordance Mosaic and List respect the click interaction.

Left clicking a bar removes an attribute from the concordance list, right clicking removes everything but the clicked attribute. Once an attribute or multiple attributes have been selected it is possible to switch to another facet to explore further. In Figure 8 the facet “author” is displayed after books have been removed. We can see from the red bars that the most frequent author was only found in books. The second and fourth most frequent authors are coloured yellow, this indicates that some of the lines associated with these authors have been removed but others have not. To view how much these yellow bars have been reduced the “Update Bars” button must be pressed to generate a new Metafacet for the filtered concordance. It is possible on this author facet window to add attributes back into the list by clicking on the red or yellow bars, and this would generate a filtered list where all books except those of the selected authors have been removed.
Figure 8: Viewing frequent authors after filtering out attribute Format = “book”. Partially removed attributes coloured yellow, fully removed attributes coloured red.

The combination of facets and attributes which can generate a single filtered list is limited only by the attribute crossover of the concordance lines. Finally the only author not colouring a block red or yellow in the nine most frequent is “Riskmonger”, who does not have any concordance lines associated with the attribute “book”. We stop the analysis here, but further exploration could be done to investigate the concordance lists and Mosaics for facets such as authorship/source dates and outlets. We would find that “Riskmonger” is a modern internet author who is responsible for the collocation patterns of “hazard” + “regulatory” and ”assessment” at position K+1.
2.3 ComFre

The ComFre visualization is a corpus comparison tool where frequency lists can be compared visually in a statistically valid manner. The functionality of the tool has been detailed elsewhere (Sheehan et al., 2018), it has since been modified to operate as a plugin for Modnlp and is briefly presented here.

![Figure 9: ComFre visualization comparing the words with the largest change in distribution rank between magazine articles from the GoK corpus authored in 2018 and 2015.](image)

The Modnlp software has a sub-corpus selection interface which can be used to save the named sub-corpora for later reuse. ComFre makes these named subcorpora available for comparison in dropdown lists. In Figure 9 “mag18” and “mag15” are selected for comparison, these subcorpora are magazine articles from the GoK corpus which were authored in 2018 and 2015, respectively.

In ComFre both axis are log scaled, which should yield a linear frequency diagram if the word frequencies follow a Zipfian distribution. Scaling both ranked lists to the same height and comparing a word’s position in the distributions lets us compare subcorpora
of vastly different size.

In Figure 9 the majority of the words have been filtered out to reveal the words with the greatest frequency changes between the two corpora. We can see that “Trump”, “Brexit” and “coal” were used much more often in the 2018 corpus, while words such as “Greek” and “eurozone” had much higher usage in 2015.

3. Domain characterization summary

This section explores the domain of corpus linguistics to identify problems and methods which will benefit from visualization. Visualizations which try to address the needs of corpus linguists are much more likely to be effective if those needs are well understood. The inclusion of domain experts in this visualization design stage is very beneficial, however just talking to users is typically not sufficient to achieve a full and accurate domain characterization. Expert users are extremely important when defining the high level goals and tasks of the domain and with ranking the importance of tasks. The characterization can be made more detailed by using methods such as examination of domain literature, contextual studies (Sedlmair et al., 2012) and needs assessments (Marai, 2018).

By performing a domain characterization, as outlined in the nested model (Munzner, 2009), the methodologies used to achieve the identified goals can be systematically investigated. The aim is to extract the low level tasks which are performed in the process of working towards the higher level goals. This analysis can be arranged as a hierarchy of goals, tasks and low level actions. The hierarchy can then be used to gain insight into the challenges faced by corpus linguists and how they have been previously addressed.

At its core domain characterization for visualization design is about identifying real problems which are relevant to the domain under investigation. This process is fluid and iterative, a level of domain understanding must be reached before work can begin on a visualization, but the design process should be reviewed as opportunities to refine the problems and domain characterization emerge.

The analysis presented here is not a full detailing of our characterization efforts. Rather, it is a presentation of some of the clearer insights and how they relate to the design choices which can be observed in the created visualization tools.

3.1 Literature-based domain analysis

Consultation and collaboration with the language scholars of the GoK project who interrogate corpora as an essential part of their analytical work lead to the natural discussion of visual tools to support analysis.

These collaborations revealed how integral the KWIC-based concordance display is to
the work of the text analyst. These visual representations provide an essential view of
the context in which the keyword occurs. However, examining the relative frequencies
of the words which surround the keyword is also a commonly performed task using
these tools, for which it would appear these tools are not well suited. In practice, the
analyst usually complements the textual information provided by the KWIC display
with lists of words sorted by frequency of occurrence in the sub-corpus under
examination, as well as other statistics. Different processes and sub-tasks mediate the
analysis as a whole.

To study this type of concordance analysis in a practical context we turned to a
reference work entitled Reading Concordances: An Introduction (Sinclair, 2003). This
book is intended as a tutorial on how to look for certain linguistic properties of a
keyword (such as word sense, phrasal usage, part of speech and many others) using a
KWIC concordance list. The reader is invited to perform eighteen tasks which introduce
the key practical actions and usage of linguistic knowledge required to make decisions
about the properties of a word or collocation. For each of these tasks we performed a
hierarchical task analysis (Annett, 2003) by combining or splitting the steps into a
series of actions and sub-actions.

Each of the eighteen tasks was analysed and tagged to assist with the classifying and
counting of the actions and sub-actions. Before explaining the exact meaning of the
tags, an example of the tagging procedure for task 4 is given. This tagging procedure
can allow a visualisation researcher with limited knowledge in the problem domain to
extract meaningful actions.

Task 4 is concerned with identifying literal and metaphorical usage phrases. The
preamble to the task provides some linguistic insight explaining that “some idiomactic
phrases in English are recognizable because they contain a word which is not found
anywhere else, like at loggerheads”. They may also be recognizable because the literal
meaning is absurd. But others are more subtle and don’t have the aforementioned
identifying marks. As an example the phrase he got cold feet seems to be a literal way
of saying that his feet are cold. How do we as readers know when it means he is cowardly?
The task studies the example of the phrase “free hand”. A concordance of 30 lines is
provided and a set of twelve directions in how to analyses the concordance are given to
the reader. An answer key is also provided which expands on the analysis and the
insights that can be gained.

The first direction tells the reader to look at the position directly to the left of the
phrases which have been sorted alphabetically “and list them in order of frequency.
Can you associate any of the SINGLETONS with any of those that recur?” (Sinclair,
2003: 21) We tag this action with the frequency tag, word position tag, group tag and
expert decision tag. The key gives a breakdown of the words at the position and notes
that “her, your” are in the same word class as “his” and that “completely, fairly, totally”
are in the same word class as ”relatively”.

708
Step two asks the reader to

“Look again at the five lines where N—1 is an adverb of degree. What is the word at N—2? Then consider the two lines where N—1 is one. What is the word at N—2? Can you associate these seven lines with the two big groups of a and his . . . ?”

The positional notation N—2 means the set of words two positions to the left of the keyword. The same tags are applied to this action as word position, exact frequency counts and linguist knowledge are used. The answer key states

“Where N - 1 is an adverb of degree, N—2 is a; so these five lines join the group of the indefinite article. Where N—1 is the word one, in no. 25 N - 2 is her and so this line joins those with possessive adjectives. The other one, no. 24, has only at N - 2 , which is unlike all the other lines in this sample, so we will fit it in later on.”

Step three starts by explicating that in the previous step 28 of the 30 lines were extracted and divided into two groups based on “choice of determiner in front of the noun hand” the reader is then told “here the difference is not just the type of determiner; consider the meaning of free hand in the two types of line and comment on the distinction in meaning.” This task is tagged with Similar Meaning, expert decision and read context. For this examples the meanings of the keyword must be analysed by reading the contexts and using linguist knowledge to compare the meanings The answer key explains that when a possessive adjective is the determiner the word “free” means “available” and the word “hand” is a part of the human body. When the determiner is a the phrase “a free hand” it means “an unrestricted opportunity”.

Skipping forward to step seven the reader is narrowing in on the linguistic patterns which are used to determine literal or metaphorical usage of the phrase “free hand”. The reader is asked to group concordance lines according to whether the verb is active or passive and to examine if this accounts for the use of the word “given” exclusively before “a free hand”. Tags group, read context and expert decision all apply. Step 8 then combines all of the previous analysis to describe an algorithm for determining metaphorical or figurative usage of the phrase “free hand”. Many of the lines which have been discarded as not matching any patterns are not included in the construction of the algorithm.

Condition 1 of the algorithm is that there is a form of the word “give” or a word with similar meaning to the left of the phrase. If not is there an occurrence of the verb “have” or “get”, or one with a similar meaning and use?

Condition 2 is that the indefinite article precedes the core phrase, either directly or with only an adverb of degree in between.
If both conditions hold the phrase “free hand” means “to be set a task without restrictions on resources or methods to accomplish it”.

Steps nine to twelve examine all that had not previously examined in the concordance. The word frequencies and patterns to the right of the keyword are analysed and used to help account for the lines which could not be explained by the left context analysis.

This example should help clarify how the tags were assigned to the individual steps of the tasks. There was a significant amount of variation across the tasks, but the core actions could be described with a relatively small set of tags.

The actions and sub-actions generalize the descriptive analysis steps into operations which are common to many of the tasks. Taking an overview of our classifications of these actions we created the hierarchy shown in Figure 10.

At the first level of the hierarchy, the primary actions (second level) are split into quantitative and qualitative groups. Qualitative actions are classified on the criteria that a decision, in which it would be possible for experts to disagree, needs to be made to complete the action. These experts could be human users or algorithmic classification processes. Quantitative actions may form a part of a qualitative action, for example, frequent patterns must be identified before they can be classified as phrasal or non-phrasal usage (Sinclair, 1991).

The quantitative actions are those in which the steps involved in the action can be clearly stated, and, given the classifications have already been made, the results will be the same when performed by a reliable analyst. For example, for a concordance word frequencies at a specific word position can be accurately and repeatably determined. The quantitative actions often make use of the results of a qualitative action, such as estimating the frequency of words to the left of a meaning group where the group has to first be identified by expert decision.

The second level of the hierarchy contains the primary actions. These are the actions which most often describe the spirit of the instructions given in the eighteen tasks. Deeper into the hierarchy the sub-actions required to perform these primary actions are presented.

At the third level of the hierarchy the area of analysis is displayed, this is the level at which we perform the primary action. Looking first at the quantitative actions, we found that in three of the primary actions (filter, frequency and estimate frequency) a word’s position relative to the keyword is the area at which the actions are applied. A fourth quantitative action, frequent patterns, has an area of analysis, estimate frequency, which is one of the other primary actions. This means the action is performed on a collection of results from estimate frequency actions i.e. the analysis is performed on frequency estimations across word positions. It is worth noting that in four of the five quantitative tasks identified the word position or multiple word positions is the area at which the action is performed. The final action identified, significant collocates,
the results of statistical analysis of the keyword and its context from the corpus under investigation. This analysis is usually undertaken as a separate piece of analysis, which has its results reported as a list of frequent collocations with a keyword.

Figure 10: Hierarchical visualization of concordance-based corpus analysis actions.

Turning to the qualitative actions and, again, looking at the area of analysis at level three, we see that the analysis always occurs at the sentence level, which is implied by the read context action. This is in contrast with quantitative actions where positions are the most common area of analysis, and for qualitative actions it appears the horizontal structure of the KWIC list is emphasized while the qualitative actions make better use of the vertical alignment. Each of the actions requires an expert (or algorithm) who evaluates the context of individual occurrences of the keyword and makes a classification decision based on the semantic and syntactic content of the concordance line. This **Expert Decision** can often be the result of a combination of reading the individual contexts (the linear structure of the text) and performing some of the quantitative actions (positional statistics of the text). In essence, the **Expert Decision** action encapsulates the process of using the information extracted by other primary actions to answer questions about the keyword using linguistic knowledge.
While most of the tags represent actions, a few additional tags were chosen to help clarify and add information about the tasks and sub-tasks. The tags word, semantic prosody, Similar Meaning and others are not themselves actions, but are useful in clarifying the objective or operation of the sub-actions. The part of speech (POS) tag is both a primary action tag and a clarifying tag. The POS primary action is to determine the part of speech of a word occurrence. The POS clarifying tag represents the use of part of speech information in another action. The purely clarifying tags are omitted from the analysis of tag frequency.

We recorded the distribution of the tags according to the number of tasks in which it appeared and the total number of actions which received the tag, as shown in Table 1. At a high level, this table tells us that both qualitative actions enabled by reading concordance lines and quantitative actions which require positional statistics are necessary for the style of concordance analysis outlined by Sinclair (2003).

Table 1: Action counts from task analysis. Total numbers of actions found in the 18 tasks and numbers of the 18 tasks which feature the action.

<table>
<thead>
<tr>
<th>Tag</th>
<th>No. of tasks in which an action appears</th>
<th>Total action appearances</th>
</tr>
</thead>
<tbody>
<tr>
<td>expert decision</td>
<td>18</td>
<td>60</td>
</tr>
<tr>
<td>estimate frequency</td>
<td>16</td>
<td>34</td>
</tr>
<tr>
<td>read context</td>
<td>16</td>
<td>31</td>
</tr>
<tr>
<td>frequent patterns</td>
<td>15</td>
<td>21</td>
</tr>
<tr>
<td>frequency</td>
<td>14</td>
<td>18</td>
</tr>
<tr>
<td>word position</td>
<td>13</td>
<td>24</td>
</tr>
<tr>
<td>POS: Part of speech</td>
<td>11</td>
<td>23</td>
</tr>
<tr>
<td>filter</td>
<td>11</td>
<td>18</td>
</tr>
<tr>
<td>sense</td>
<td>10</td>
<td>19</td>
</tr>
<tr>
<td>group</td>
<td>7</td>
<td>9</td>
</tr>
<tr>
<td>significant collocate</td>
<td>5</td>
<td>7</td>
</tr>
<tr>
<td>usage</td>
<td>5</td>
<td>6</td>
</tr>
<tr>
<td>phrase</td>
<td>5</td>
<td>6</td>
</tr>
</tbody>
</table>

3.1.1 Influence on visualization design

The structure that the task analysis and tag weightings add to the descriptive methodological steps was very useful for the early visualization design. The initial prototype of the Concordance Mosaic followed directly from this analysis. By focusing on frequent yet difficult aspects of the methodology we were able to create an interface which was likely to be of interest to corpus linguists. This gave us the opportunity to
engage with domain experts in the iterative development of tools and methodology starting with a useful prototype.

3.2 Methodological descriptions for GoK case studies

During the development of the visualization tools many interactions with GoK researchers occurred in situations such as progress meetings, design reviews and informal meetings. One set of interactions which made significant contributions to identifying relevant domain problems is presented here.

This takes the form of an initial presentation and follow up observation session with one GoK researcher. In the initial meeting a simplified methodology for a case study was described and a visualization which could be useful was suggested. The follow up observation session took place a number of months later after the Mosaic interface had been improved and made available to the researchers.

3.2.1 Methodology presentation

In the methodology discussion meeting a brief presentation outlining an example methodology and its challenges was given by a member of the GoK project to help with the initial definition of visualization goals for the project. The methodology was explained in the form of a case study. The case study made use of the portion of GoK English corpus which was available at the time. The task was defined as comparing the patterning around the keyword “citizen*”. The * represents a regular expression search for continuations of the word citizen such as citizens and citizenship. The patterns identified were compared across two large sub-corpora.

- **Sub-corpus 1** A sub-corpus of modern English translations from Classical Greek (1850 onwards);

- **Sub-corpus 2** A sub-corpus of translated and non-translated texts written by contemporary authors, published between 1992 and the present day.

The method itself consisted of two techniques. The goal of the first technique is the identification of explicit definitions of “citizenship” contained within each sub-corpus. To find these definitions the researcher wants to compile a list of frequently used verbs and prepositions at position “keyword+1”. To achieve this the GoK corpus browser is used. Sub-corpus 1 was selected using the sub-corpus selection tool, the regular expression “citizen*” was searched and the concordance was sorted at position “keyword+1”. The researcher then spends time scrolling through the concordance and compiling a list of relevant frequent words at the position of interest, Figure 11 shows the concordance window sorted and scrolled to the preposition *as*. With this list in hand more accurate searches can be run such as:
citizenship+“(is/as/was/defined/conceived/are/equals/considered/appears/means)”

citizenship+“(has/should/must/will/may)”

citizen+“(is/as)”

citizens+“(are/as)”

By reading the concordance lines generated by these new searches definitions can be extracted. Some examples of the definitions found are:

- Citizenship is a status bestowed on those who are full members of a community.
- As well as enjoying rights, citizens are required to undertake responsibilities such as paying taxes, and jury or military service.
- Citizenship should be based purely on residency
- US citizenship has represented a safe haven from oppressive regimes around the world

The second technique is the observation of patterns in the kinds of adjectives used to modify “citizenship”, as well as constructions such as “citizens+of+*”. The researcher explained that this technique is more difficult and time consuming using a concordance browser. To quote the researcher.

“Specifically, it is difficult to get a quick overview of such patterns using the concordancer given that the number of lines returned for my searches is quite large:
e.g. 4420 hits for “citizen*” in my sub-corpus of translations from Classical Greek.”

The researcher had some experience with linguistic visualization having used early versions of Mosaic and in the past had used word clouds, such as Wordle (Viegas et al., 2009), to present research results. There are some challenges to overcome to use word clouds for the methodology. The first which the researcher noticed is that stop-words dominate the frequency distributions of the word positions, so some technique has to be applied to get meaningful results. The suggested technique was to use a stop-word list to filter the visualization. The concordance would need to be processed to extract the words at particular positions for visualization, since the concordance is structured as a list of aligned text extracts. The result of the researchers reasoning was an interface for displaying positional word clouds with the option to exclude stop-words. The presentation included a mock-up of what a visualization to solve this problem would look like, as shown in Figure 12. The mock-up displays a word cloud for either a full concordance or a chosen word position, and has the option to remove stop-words. Looking at the mock-up in Figure 12 the words modifying citizen are presented in a manner that emphasizes frequency and provides an overview on a single screen of a position relative to the keyword.

At the end of the presentation the idea and its feasibility were discussed and some questions were asked to clarify the methodology. The notes taken were later discussed with the researcher and the following questions and answers were prepared.

- What is the domain in which the case study is situated?

 “Translation and Reception studies. How have we received classic Greek texts? How has translation shaped this reception? The role of translation is often overlooked.”

- Is this methodology (excluding the proposed visualization) typical of the field?

 “Translation Studies as a discipline tends to encourage close qualitative analysis of a small selection of examples chosen from specific texts to illustrate a particular argument.

Corpus analysis enables the translation scholar to identify and investigate with significantly greater ease differences between and patterns within translations, taking into account the full length of each work as a complete text.

Corpus analysis has been extensively used in translation studies before (e.g. within the TEC project and many others) but the field has tended to focus mainly on more micro-level linguistic concerns, rather than the socio-political implications of translators’ word-choices etc.”
3.2.2 Methodology presentation: Design influence

The presentation helped confirm that the tasks and actions identified in the task analysis were relevant to at least one linguistics researcher. The early design of Mosaic did not take into account the need for removal of stop-words to make the Mosaic more usable. Th researcher identified this flaw but did not notice the equivalence between a mosaic column and a word cloud. By removing the stop stop-words from the Mosaic you present the same information as a positional word cloud with a greater visual emphasis on word position and frequency. This was a very beneficial meeting, and led to the addition of this “No Stop-word” view of Concordance Mosaic.
3.2.3 Methodology observation: Case study of “the people”

After a significant amount of time follow-up observation sessions were organized to gain further insight into the methodologies of the researcher who gave the presentation. This took place after the development and release of the mature Concordance Mosaic, but prior to the development of Metafacet.

Prior to the observation session a spreadsheet was created with the headings filenames, date, translator, people, citizens, commons, Athenians, public. The meta-data information related to filename, date and translator were added to the table. The remaining headings are keywords which will be investigated as part of this study. The spreadsheet used in the study can be seen in Figure 13. Partitioning the frequencies by date, file or translator is equivalent for this sub-corpus, as each file has a unique author and date.

![Figure 13: The spreadsheet which was used in the study of “the people” in translations of “Thucydides” from the GoK corpus.](image)

The first steps of the study focused on the keyword frequencies in the entire sub-corpus.

- The sub-corpus of “Thucydides” was selected.
- The keyword “people” was searched and the total frequency in the corpus was recorded
- Regulator expressions for the other “citizens?”, “commons?”, “Athenians” and “public” were searched and the total frequency in the sub-corpus was recorded.

The researcher commented, after the keyword frequencies had been recorded, that the keyword “Athenians” is much more frequent than other keywords. This is unexpected and will need to be investigated.
The next step was to gather the keyword frequencies for individual files.

- Make a sub-corpus selection for each individual file. Record in the spreadsheet the number of lines returned for the keyword “people”.

The analysis now turns from keyword frequency to the identification of collocation patterns. Mosaic was used extensively to identify collocation patterns and frequency of occurrence. The steps observed were:

- Make a sub-corpus selection for the first file.
- Perform a search for the first keyword “people” in the concordance browser.
- Open the Mosaic visualization and remove stop-words.
- Examine word frequencies.
- Open a document for taking notes and record in it the most frequent collocations directly to the left of the keyword. The words “common and “Athenian” were recorded.
- Return to the sorted concordance list and check if any continuations (such as “Athenians”) are present.
- Record the counts for the frequent collocated words. (common 8, Athenian 6).
- Open the frequency mosaic with stop-words included.
- Record in notes “lots of hits for the+people (i.e. unmodified)”
- Similar analysis for second file.
- Frequent collocates directly to left of “people” (common 34, Athenian 5).
- Record “A few more different adjectives modifying this noun: entire, experienced, free, dynamic, adventurous.”
- Similarly for the third file the noted collocates were (Athenian 13, whole 13, common 5).

The recording was ended and the researcher explained how the analysis would progress. The collocation pattern method is repeated and would continue in the same manner for each file and keyword. The next stage of the analysis would be to analyse the frequency patterns using the table. Possibly making bar charts in a spreadsheet application. Temporal patterns are expected. Identified patterns will be investigated using qualitative analysis, which involves reading the concordance lines related to the identified patterns. Understanding the meaning of the concept of “the people” at
different times is the goal.

This analysis is performed in the context of the knowledge the researcher has about the corpus and texts. She states that it is interesting that there are

“No translations 1919-1998, during period of huge cultural change in Britain. Possible reasons for this include Suffrage, war or technological revolution. The researcher explained that information about the authors and texts will influence the analysis. Some examples of information which is relevant are “the political leanings of the translators which is established relevant knowledge” and “certain texts are partial translations, abridged versions etc.”

Any differences identified, temporal or otherwise, must take into account translator style, politics and more.

Some questions were asked the researcher to elicit more information about the methodology

- How did you come up with this methodology?

 “Playing around with the corpus tools, generating concordances for interesting keywords, trying to find patterns in the data.”

- How did you choose the keywords?

 “Obvious keywords associated with the concept of “the people”. The idea for the study emerged through reading the literature on citizenship.”

- Would this methodology be useful for other researchers in the field?

 “Other scholars using the GoK software to investigate the role of translation in the evolution of political and scientific discourse use similar methods. Other projects developing other corpora may also adopt some aspects of the methodology.”

- What are barriers to the adoption of your methodology?

 “Not sure. Perhaps better documentation of the corpus software, detailing what it can and can’t do, with lots of example analysis. The publication of case-studies by members of the team will also help demonstrate the potential of the tools.”

- Mosaic was used in this analysis, is this typical when you investigate collocation patterns?

 “Yes. Mosaic will be very useful for this case-study and any investigation of collocations, because it tells you in very quick and transparent way which
are the most common collocates in each word position for a given keyword.”

- You did not make use of collocation strength in your analysis, do you intend to?

 “No. The collocation strength Mosaic is not immediately clear, and so (to be brutally honest) would tend to slow down analysis rather than speed it up.”

- Have you used this methodology for other studies?

 “The collocation pattern aspect of this study is unique in my work. I have in previous studies studied keyword frequency in larger sub-corpora where there are multiple files for each author and date. I can show you an example for the concept of “Statesman”.”

3.2.4 Methodology observation: Case Study of “Statesmanship”

An unpublished paper on a case study of the concept of “Statesmanship” was supplied by the researcher and the major conclusions and analysis were described.

In the GoK corpus the term “statesman” was found to exist “almost exclusively (90%) in translations from Classical Greek”. This pattern was not observed for other similar keywords such as “governor”, “leader”, “ruler” and “citizen”, which are more evenly distributed across all language pairs. The analysis which arrived at this conclusion was a simple keyword frequency comparison across the translation facets of the corpus. This involved selecting each sub-corpus individually and recording the number of concordance lines for the keywords in each sub-corpus.

The frequency of the keyword “statesman” in the sub-corpus of Classical Greek translations was analysed. A spreadsheet with an entry for each of the 261 files in the sub-corpus was created and meta-data (the author, the title, the translator and the date) was entered for each file. This was done manually and was time consuming. The researcher explained that in this form “the information could easily be (re)sorted according to each of these meta-data facets and patterns more easily identified”. The number of concordance lines for each file was found by selecting a sub-corpus of a single file and searching for “statesman”. Performing this action for each of the 261 files was also time consuming. A sample of the completed spreadsheet can be seen in Figure 14.

By examining the spreadsheet and generating bar charts, such as Figure 15, the faceted distributions of “Statesman” can be understood. “statesman” seemed to be “bursty”, to use the author’s term, and to exhibit a temporal pattern.

The frequency of “statesman” in these corpora suggest most recent translations (1950-2012) of ancient Greek texts use “statesman” much less frequently. This is surprising because the corpus contains several recent re-translations
(published within the last seventy years) of classical texts such as Aristotle’s Politics or Plato’s Dialogues which in earlier English-language interpretations included the keyword “statesman” very prominently.

Figure 14: A sample from the spreadsheet used in the study of “statesman” in translations of Classical Greek from the GoK corpus. The full spreadsheet contains 261 lines of analysis.

Some clarifying questions were asked and answered:

- You mentioned the process of completing the spreadsheet was time consuming, how long did it take?

 “Probably around 5-6 hours because of the amount of manual processing required. It would take a lot longer if I were to investigate more than one keyword.”

- Where did the idea for this study and methodology come from?

 “This was exploratory. I was not trying to establish anything in particular, only to understand whether the term “statesman” was used, how frequently (in comparison with other semantically related terms), and if any obvious patterns could be found from these initial quantitative analyses.”
The terms “statesman” and “citizenship”, which I have investigated previously, are very closely related concepts, especially in classical Greek thought.”

- Were the visualization tools used in this case study?

 “My focus on the use of a single keyword (“statesman”) and alternative word choices did not require and collocation pattern analysis. This is more typical of translation studies research. The corpus tools lend themselves particularly well to the analysis of collocations (this is one of their clear advantages), and this is why I want to push my research in this direction with my next case study.”

![Figure 15: Bar chart examining temporal spread in translations of ancient Greek.](image)

- Are there any areas of your methodology where you current or new visualization tools could be beneficial?

 “Constructing the spreadsheets is time consuming. A tool which can help identify patterns in the dispersion of a concept according to different metadata facets would be extremely helpful, at least for the kinds of research I intend to carry out as part of this project.”

3.2.5 Case study observation: Influence on visualization design

The most significant outcome of the two case studies was the emergence of the obvious need for a method to support the analysis of concordance lists through the lens of metadata. This observation session led to further discussion and needs assessment for a meta-data analysis tool which eventually became Metafacet.
Another problem identified was that in the version of Mosaic available to the researchers at that time only a single collocation statistic was available, and it was based on Mutual Information. The researcher did not know exactly what the scaling scheme for the collocation strength of Mosaic View was, and so could not accurately interpret or use it for publication. This led to the creation of optional scaling schemes based on well-known collocation metrics. More collocation measures are still being added to the tool.

4. Discussion and conclusions

We have presented three visualization techniques for corpus analysis. We hope that they can be adopted where appropriate by lexicographers and the wider corpus linguistic community. In addition, discussion of the tools and techniques by the community is welcomed.

We would be glad to hear any ideas, comments or criticisms of our ideas, understanding and designs. We believe the problems the tools address are general enough to have wide applicability in corpus linguistics, but we do not doubt that specific domains, such as lexicography, will have nuanced requirements that may need specialized interactions or entire redesigns to make them useful enough to be widely adopted.

The domain characterization detailed here can be another point of discussion, perhaps leading to more specialized future work on specific domain problems. We believe it is extremely important to provide a rationale for design decisions and to engage with domain experts when designing or modifying a tool or technique. Future work in this area will take the form of modifications which are identified during further domain exploration, and new visualization techniques where entire new problem areas are uncovered.

5. Acknowledgements

This paper is supported by European Union’s Horizon 2020 research and innovation programme under grant agreement No 825153, project EMBEDDIA (Cross-Lingual Embeddings for Less-Represented Languages in European News Media). The results of this paper reflect only the author’s view and the Commission is not responsible for any use that may be made of the information it contains. Pierre Albert has been funded though the INCA project. We thank the INCA project members in Ireland for granting us access to the trainee data.

6. References

This work is licensed under the Creative Commons Attribution ShareAlike 4.0 International License.

http://creativecommons.org/licenses/by-sa/4.0/