

Introducing Kosh, a Framework for Creating and

Maintaining APIs for Lexical Data

Francisco Mondaca1, Philip Schildkamp2, Felix Rau2

1 Cologne Center for eHumanities, University of Cologne
2 Data Center for the Humanities, University of Cologne

E-mail: f.mondaca@uni-koeln.de, philip.schildkamp@uni-koeln.de, f.rau@uni-koeln.de

Abstract

In recent years, the use of application programming interfaces (APIs) throughout the Internet
has increased significantly. The main reason for this growth is the multiplicity of scenarios
where APIs can be employed. In the case of APIs for lexical data, their use varies from
applications for mobile devices, desktop applications to natural language processing (NLP)
applications, among others. While some publishers offer their data via APIs, for most small or
medium size publishers implementing and providing an API is still an obstacle due to the costs
and technical expertise required for their development and maintenance. Against this
background, we have developed Kosh, an open-source framework for creating and maintaining
APIs for lexical data. Kosh has been conceived to minimize the technical expertise required for
its use, while offering generic, flexible and efficient data management. In this article, we present
the methodology employed in Kosh’s development and describe its architecture and
functionality.

Keywords: API; Elasticsearch; framework; GraphQL; REST

1. Introduction

The development of digital lexicography over the past decades has been focused on the
production of lexical data, either by digitizing printed works or by creating born-digital
lexical data from scratch. Therefore, software production within this field of expertise
has been directed towards the development of tools for compiling lexical data. Lexical
data access has been confined mainly to the development of web applications, which
are the heirs of printed dictionaries. The emergence of NLP applications and mobile
devices, among other use cases, has increased the necessity to focus on the development
of efficient ways of accessing lexical data. APIs satisfy this requirement, as a single API
instance can provide data for multiple applications at the same time.

Although the use of APIs seems to ease several aspects of data access, there are no
software solutions focused on API development and maintenance. While it is possible
for large publishers to develop their own APIs, the main problem faced by small or
medium sized publishers is the absence of technical expertise in-house and expensive
external solutions. Against this background we created an easy-to-use framework to
serve lexical data via APIs in order to lower this technical and financial hurdle.

907

Proceedings of eLex 2019

The structure of this article is as follows: In Section 2 the motivation and decisions
made about data format, data control, data persistence and efficient data access are
explained. In Section 3 the architecture and functioning of Kosh are described. Section
4 concludes with a summary of the presented work and future development of the
framework. Referenced publications are listed in Section 5.

2. Development Methodology

2.1 Background and motivation

Kosh has been conceived to provide API access to any XML1-encoded lexical dataset,
and its name Kosh derives from the Hindi word for dictionary or lexicon, कोश koś or
kosh, which in turn derives from Sanskrit कोश kośa with the same meaning. Kosh’s
origin is related to multilateral API development for TEI2-encoded Sanskrit dictionaries
at the University of Cologne, where the most noted digital collection of Sanskrit
dictionaries worldwide is hosted.

Using the Cologne Digital Sanskrit Dictionaries web portal3, users can query all of the
37 dictionaries available through various web applications and even download each
dataset in XML format. The underlying digitization project started in 1996, when XML
and Unicode were not available, while in 2003 the dictionaries had been converted into
XML. During the Lazarus project4 (2013-2015) three dictionaries were encoded in TEI-
P55, among them the two with the most complex structure of the entire collection
(Böhtlingk & Roth, 1855-1875; Monier-Williams, 1899). Those were chosen to develop
a custom schema6 to be employed for all future TEI-P5 dictionaries in the collection.

The first iteration of Kosh were the C-SALT APIs for Sanskrit Dictionaries (Mondaca,
2018), a proof-of-concept developed within the context of the currently running
VedaWeb project7. One of this project’s most important outcomes is to link each word
of the Rigveda, the oldest text of the Indo-Aryan language family, to a dictionary
specifically compiled for this text (Grassman, 1873). And in order to provide API access
to this TEI-P5-encoded dictionary to the VedaWeb web application and other possible
use cases, the C-SALT APIs for Sanskrit Dictionaries were implemented and have been

1 Extensible Markup Language, https://www.w3.org/XML
2 Text Encoding Initiative, https://tei-c.org
3 Cologne Digital Sanskrit Dictionaries, https://www.sanskrit-lexicon.uni-koeln.de
4 Cologne Center for eHumanities, Lazarus project, https://cceh.uni-koeln.de/lazarus
5 Text Encoding Initiative, P5 Encoding Guidelines, https://tei-c.org/guidelines/P5
6 C-SALT Dictionary Schema, https://github.com/cceh/c-salt_dicts_schema
7 VedaWeb, https://vedaweb.uni-koeln.de

908

Proceedings of eLex 2019

transformed into a data module8 served by Kosh.

The guiding principle of both iterations is and has been to provide efficient access to
the underlying lexical data through means of open-source software. But unlike the first
iteration, the C-SALT APIs for Sanskrit Dictionaries, which were hard-coded to only
serve their one designated dataset, Kosh is a generic solution for XML-encoded
dictionaries, i.e. how each dictionary is structured is not relevant, and any XML-
encoded dictionary can be indexed and accessed through Kosh’s APIs.

2.2 Modular rather than monolithic

The early-stage development of Kosh consisted partly of researching software with
similar features, and we noticed a lack of tools that focus on providing API access to
lexical data. Most of the dictionary writing systems (DWS), commercial as well as
open-source, are focused on compiling lexical data, but bear no means of providing API
access to the generated data. This is reflected in a recent survey among lexicographers
(Kallas et al., 2019: 33), asking respondents to identify their wishes or needs to be
solved in the next 10-15 years; API access was one of the mentioned topics.

An exception in this respect is the open-source DWS Jibiki, which provides access to
lexical data contained within the platform through an API (Mangeot & Enguehard,
2018: 29). But to use this API, its clients must previously register with the system.
While for many publishers this might be a desired feature, as it gives them an extra
layer of control and is integrated into the DWS, we opted for a different approach to
Kosh’s software architecture: Modularity.

When following a modular approach to software development, resolving errors or scaling
up/down specific aspects of a system is usually less complex than in the case of
monolithic applications, the prime architecture in traditional software development.
For example, if an API module exhibits undefined behaviour (an error), this should not
affect or propagate to the whole DWS, but should be contained within the erroneous
module. This is one reason why the microservices architecture, essentially modular, has
reached such a high level of popularity throughout the software industry.

The task of a DWS should be focused on creating and compiling new lexical data and
if required accessing external sources via standardized APIs. As is the case with
Lexonomy9, a cloud-based DWS that can access data from Sketch Engine10, a corpus
manager tool, via an API. When keeping it modular, lexical data generated with this
or another DWS is published by a different software component than the DWS itself,
such as Kosh.

8 C-SALT APIs for Sanskrit Dictionaries, https://cceh.github.io/c-salt_sanskrit_data
9 Lexonomy, https://www.lexonomy.eu
10 Sketch Engine, https://www.sketchengine.eu

909

Proceedings of eLex 2019

2.3 Input Data Format

In order to keep the complexity of Kosh as minimal as possible, we decided to support
only the most common serialization format in lexicography: XML. At scholarly level,
the use of XML-based models such as the TEI is well-known, especially in the
digitization of printed dictionaries. DWS such as TLex Suite 11 or the Dictionary
Production System 12 also output XML data. Other popular formats employed in
dictionary compilation such as Toolbox13, prevalent in language documentation, can be
transformed into XML with open access tools14, as is also the case for most of other
formats such as JSON15 or YAML16. XML is widely used for representing dictionaries
modelled as trees, but it is also employed to serialize graph-based models such as RDF17,
although other serialization formats for graph-based models such as Turtle18 or JSON-
LD19 have gained more popularity.

Kosh can handle any XML-encoded lexical dataset. We believe that developing a
generic framework for APIs means that the framework should be agnostic towards the
structure of the dictionaries involved: Searchable fields vary between dictionaries and
they have to be defined by the publisher. Kosh can handle all types of structures as
long as they are serialized in XML: Graphs, trees or graph-augmented trees, a tree-like
structure that allows elements to have more than one parent (Měchura, 2016, 2018).
The only limitation of our generic approach is the requirement to specify only one
single XPath expression to represent an entry of the respective dictionary.

When indexing RDF datasets with Kosh, the problem that arises is to choose which
nodes will be indexed, as lexical data is normally to be found in different nodes, unlike
in tree-based models. If data has been encoded in OntoLex-Lemon (McCrae et al.,
2017), one of the most employed graph-based models for lexical data, we would ideally
index a top level node such as LexicalEntry. The problem then is that most of the
lexicographic information such as forms and senses is normally to be found in other
nodes i.e. Form or LexicalSense. So, in this case, we would need three indexes to
access these nodes. For indexing the English WordNet20, only two indexes are required

11 TLex Suite, https://tshwanedje.com/tshwanelex
12 Dictionary Production System, http://dps.cw.idm.fr
13 Toolbox, https://software.sil.org/toolbox
14 Natural Language Toolkit, Toolbox Reader,
https://www.nltk.org/_modules/nltk/toolbox.html

15 JavaScript Object Notation, https://www.json.org
16 YAML Ain’t Markup Language, https://yaml.org
17 Resource Description Framework, https://www.w3.org/RDF
18 Turtle, https://www.w3.org/TR/turtle
19 JSON for Linking Data, https://json-ld.org
20 English WordNet, https://en-word.net

910

Proceedings of eLex 2019

for the types of nodes available: LexicalEntry and Synset21.

2.4 Simply generic

As mentioned above, our starting point, conceptually and technically, was the C-SALT
APIs for Sanskrit Dictionaries. Therefore, decisions such as which web framework,
which search engine and which API paradigms to use were already made. The main
issue we had to tackle was to conceive a generic method for any XML-encoded
dictionary to be parsed and indexed. For this purpose, we set two goals: i) Make the
configuration of this process as human-friendly as possible, and ii) from a software
development perspective as elegant as possible.

Another question was: Which notation system should be used to determine the location
of the nodes to be indexed? As we are parsing XML files, a rational alternative was to
choose XPath22, a query language designed for selecting nodes in an XML document.
As Kosh relies on lxml23, a library for manipulating XML documents, which supports
XPath 1.0 but not XPath 2.0, all XPath notations must conform to XPath 1.0.

Regarding the human interaction required to configure Kosh, one must specify which
nodes of which XML documents contain lexical entries and which subnodes contain
fields to be indexed. Elasticsearch24 indices can be configured by external JSON files
(see Section 3.2); such a file is used by Elasticsearch to setup an index and its fields
with their respective data types, which are specified under the property properties.
Following this pattern, we employ the _meta property to store Kosh-specific data
without integrating it with the respective Elasticsearch index. In conclusion, by
enriching the standard Elasticsearch JSON index definition with all required Kosh-
specific data, we are able to drastically minimize human configuration effort.

2.5 Searching lexical data

A crucial decision in developing Kosh has been to employ a search engine, Elasticsearch,
instead of a database, relational or not, for searching through and retrieving lexical
data. We abstained from using a database management system (DBMS) with a
mounted search engine on top of it as our primary data storage, as this solution seemed
to add a level of complexity that is too cumbersome for a framework that should deal
with different datasets and update them automatically when modified. The central
question here is, why would a database be useful for this purpose?

21 English WordNet Kosh data module,
https://github.com/cceh/kosh_data/tree/master/wordnet_en

22 XML Path Language, https://www.w3.org/TR/1999/REC-xpath-19991116
23 lxml, XML and HTML with Python, https://lxml.de
24 Elasticsearch, https://www.elastic.co/products/elasticsearch

911

Proceedings of eLex 2019

Databases were conceived and are employed for storing and managing data. Some of
them (e.g. PostgreSQL25) allow full-text searches, and most of the search scenarios
required by the average dictionary consumer might be covered by this functionality,
but DBMS in general are not tailored to automatically hash fields to minimize response
latencies nor to provide different means of fuzzy query logic as search engines are.
Search engines are thus the best performing systems, and Elasticsearch is one of the
most used and best documented search engines servers available, so we chose to employ
it.

2.6 Tracking data changes

An ideal scenario to collaboratively edit dictionaries and track changes would be to
place all the datasets on a git26 repository. One of the main features of git is versioning,
and if the modules are on a cloud repository then all users with access can track changes
and contribute. This aspect is particularly useful if a dataset contains errors or is open
to modifications, and as dictionaries are continuously being edited and extended,
versioning is a major improvement in their compilation process.

While not being part of Kosh’s core, any publisher using Kosh can easily setup data
synchronization pipelines by e.g. hooking into GitHub events27, and as soon as Kosh
notices the changes being propagated to its local data modules (i.e. filesystem watches
are triggered), the respective search indexes get updated.

2.7 Choosing API paradigms

Authors like Tarp (2015: 34) have pointed out that one of the central features of a
dictionary is to retrieve information in an easy and efficient way. Since we second this
perspective, Kosh provides access to indexed lexical data not only via a single API
paradigm, but the two most popular among the request-response APIs: REST (Fielding,
2000) and GraphQL (Shevat et al., 2018: 224). Besides these two main API paradigms,
there are some less-employed technologies available, e.g. XQuery28, which we thought
of implementing but refrained from at this early stage of development.

REST has been the most popular API paradigm in the last decade, but GraphQL has
risen in popularity considerably during the last few years. The reduced data load that
GraphQL offers towards mobile applications is an attractive factor for its
implementation in such environments (see Section 3.4). And as our goal is to satisfy as

25 PostgreSQL, https://www.postgresql.org
26 git Source Control Management, https://git-scm.com
27 GitHub Developer Guide, https://developer.github.com/webhooks
28 XML Query Language, https://www.w3.org/TR/xquery-31

912

Proceedings of eLex 2019

many consuming and publishing use cases as possible with this framework, serving
endpoints for both APIs per dataset offers the highest compatibility and therefore
coverage.

While Kosh’s lexical input data has to be in XML format, both APIs return data in
JSON format. The reason for this decision lies in the fact that parsing JSON is less
cumbersome than parsing XML. This statement might be misleading, as Kosh by
default indexes the whole entry in XML format, independently of the searchable fields
defined by the publisher. If the client needs information that is not available through
these fields, it must parse the full XML entry returned by Kosh’s APIs.

2.8 Open-Source Licensing

Kosh is an open-source framework and relies extensively and exclusively on open-source
technologies. It runs natively on Unix-based systems, in particular Linux (Torvalds,
1997), the operating system prevalent in server environments. Elasticsearch, the search
engine server, is also open-source, as is Python, the programming language that Kosh
is written in. Both API paradigms offered by Kosh, REST and GraphQL, are also open-
source, as is Docker29, which may be used to deploy Kosh (see Section 3.5). In terms of
licensing, Kosh is available under the MIT Licence30.

3. Architecture and Functioning

Figure 1: Overview of Kosh’s Architecture.

29 Docker, https://docs.docker.com
30 MIT License, https://opensource.org/licenses/MIT

913

Proceedings of eLex 2019

3.1 Overview

Kosh’s core relies on the search and analytics engine Elasticsearch and access to data
indexed by this search engine is provided by GraphQL and REST APIs. While currently
only two API paradigms are implemented, Kosh’s application structure is designed to
be modular, wherefore implementing new API paradigms to provide access to the
underlying lexical data is part of our vision. A Kosh data module (input data) consists
of:

1. A dataset in XML format containing lexical data

2. A JSON file containing information about the elements and their data types to
be extracted from the XML file(s) in XPath 1.0 notation. This information is
used by the XML parser, by Elasticsearch and by the API components

3. A kosh dotfile (.kosh) providing the following information:

- The data module(s) name(s)

- Filesystem path(s) to the XML file(s) containing lexical data (see 1.)

- Filesystem path(s) to the aforementioned JSON file(s) (see 2.)

Kosh is written in Python and can be deployed in Unix-based systems. XML parsing
is done with lxml, the library elasticsearch-dsl31 is employed for communicating with
Elasticsearch, and Flask32 is used as Kosh's web application framework. Kosh’s core can
be downloaded as a Docker image from Docker Hub33 or accessed directly on GitHub34.

3.2 Data and metadata

Kosh processes lexical data in XML format and datasets might be split into multiple
files (see e.g. de_alcedo35). Further, a single Kosh instance can serve multiple data
modules, while each data module is accessible through its own API endpoints. But
Kosh’s main innovation lies in the possibility to define the searchable fields, their
respective data types and thus the perspective on each individual dataset. The only
constraint is that for each index only one top-level node, i.e. entry, is allowed, but it is
possible to create multiple indexes for a single XML file (see Section 2.3).

31 Elasticsearch DSL, https://elasticsearch-dsl.readthedocs.io
32 Flask, http://flask.pocoo.org
33 Kosh Docker image, https://hub.docker.com/r/cceh/kosh
34 Kosh GitHub repository, https://github.com/cceh/kosh
35 De Alcedo Kosh data module, https://github.com/cceh/kosh_data/tree/master/de_alcedo

914

Proceedings of eLex 2019

A lexical entry may contain different substructures, e.g. headword, part-of-speech (PoS),
senses, etc., but Kosh is agnostic in this respect. The only information required for
parsing and indexing a lexical entry is its XPath within the XML file(s). If no further
fields (and their XPaths), e.g. headword or PoS, are specified, users can search in the
whole entry but not in specific substructures, as the whole entry is indexed per default
and analysed without its markup. This might be relevant for some use cases, especially
when a dataset cannot be encoded in a more fine-grained manner.

Figure 2: JSON configuration file for the Basque dictionary Hiztegi Batu Oinarriduna36(HBO)

The JSON file seen in Figure 2 is used to configure the underlying Elasticsearch index.
Relevant for Elasticsearch is the mappings property. It must contain the properties
key, which specifies the fields to be indexed and their respective data types. For
handling strings, the data types keyword and text may be chosen. The difference
between them is that the latter is analysed by the standard analyser, which tokenizes
the input string based on the Unicode Text Segmentation algorithm, while the former
does not analyse or modify the input string. This should be taken into consideration
when indexing headwords, because if they are indexed as text the analyser converts
the input strings to lowercase and splits them if they contain spaces. In some cases this
could render exact matches (term queries in Elasticsearch terminology) impossible.

Kosh-specific configuration values, e.g. information relevant for XML parsing, are

36 HBO Kosh data module, https://github.com/cceh/kosh_data/tree/master/hiztegibatua

915

Proceedings of eLex 2019

stored within the _meta property. It contains the XPath to lexical entries within the
mandatory property _xpaths.root and any additional fields to be extracted within
the property _xpaths.fields. Usually every lexical entry in parsed XML files contains
a unique ID, which is also required by Kosh. This applies to the dataset as seen in
Figure 2, but some datasets might not contain unique entry IDs (see e.g. freedicts37).
In such cases, Kosh generates IDs by calculating SHA1 hashes from a normalized form
of each entry, so those IDs only change when the respective entry changes and therefore
are reproducible.

Data modules are identified by Kosh through the existence of a .kosh dotfile. Such
a .kosh file acts as an entry point for the data module by specifying its names, file
system paths to XML files that contain the lexical data to be indexed, and to the JSON
metadata files containing the previously described definitions for the respective data
module.

Finally, when running Kosh on an operating system capable of notifying38 file changes,
Kosh automatically updates the respective Elasticsearch index and re-binds all API
components to reflect changes made to the data module definitions or its lexical data.

3.3 Elasticsearch engine

Kosh employs Elasticsearch as its search engine server. Currently, the supported query
types are those available for unique fields with the properties keyword or text in the
configuration file, e.g. prefix, term and match. Query types on multiple fields, e.g.
multimatch and bool, have not yet been implemented but are being actively
developed. String based queries can be classified as full-text or term-level, and clients
can perform both types of queries on all indexed fields. Queries might return different
results when using a term query (exact matching), if the queried field has been indexed
as text instead of keyword, because text fields are analysed, i.e. they are tokenized
and lowercased. For example, if a dictionary has uppercased lemmas which have been
indexed as text, any uppercased term-level query on the respective field will not deliver
results.

By default, Elasticsearch (and thus Kosh) returns ten elements per query, but a client
can request more results by providing a specific integer value in the size query field.
Further, Kosh’s default configuration offers two term-level query types that expose all
the indexed entries at once: regexp and wildcard. And the prefix query type can
return all entries in a couple of requests. If the publisher wishes to restrict access to his
lexical data, i.e. only offer queries that return a subset of the data, these query types
have to be disabled in Kosh’s source code.

37 Freedict Kosh data module, https://github.com/cceh/kosh_data/tree/master/freedict
38 inotify Linux Manpage, http://man7.org/linux/man-pages/man7/inotify.7.html

916

Proceedings of eLex 2019

Figure 3: Swagger UI39, prefix query for ‘arb’ in the HBO, max. 20 results.

3.4 API access

While all the previously described layers of Kosh are crucial for its functioning, the
APIs represent the visible and most relevant layer for clients. Kosh offers the two most
popular API paradigms of the last decade for each indexed dataset: REST and
GraphQL, and both return data in JSON format. The main differences between them
are that GraphQL has a single endpoint, is typed, and that in a GraphQL query, unlike
when using REST, the fields to be returned need to be explicitly specified. While this
function can also be implemented in a REST API via sparse fieldsets40, it is not a
constraint on its implementation. For example, when using GraphQL, a client may

39 Swagger UI, https://swagger.io/tools/swagger-ui
40 JSON API, Sparse Fieldsets, https://jsonapi.org/format#fetching-sparse-fieldsets

917

Proceedings of eLex 2019

retrieve only the headword field of all entries matching a specific query, e.g. all
headwords that have the prefix ‘arb’, while a RESTful query would retrieve all the
available fields related to the matched entries. Thus, one of the main advantages of
GraphQL over REST is reduced data load, which can be relevant for mobile
applications in areas with connectivity problems.

Figure 4: GraphiQL - Prefix query for ‘arb’ in the HBO, fetching only related lemmas,

max. 20 results

The framework provides user interfaces for all APIs (including documentation of
available endpoints, queries, and typings). This way, all those interested in accessing
the lexical data provided by the APIs can easily test and integrate them. For each data
module Kosh serves an instance of Swagger UI (see Figure 3), running against all
RESTful endpoints, and a GraphiQL41 instance (see Figure 4), to allow running all
available queries.

41 GraphiQL GitHub repository, https://github.com/graphql/graphiql

918

Proceedings of eLex 2019

Kosh offers two RESTful endpoints per data module: entries and ids. Using the
entries endpoint, a client may search within the default available xml field as well as
within any field defined by the respective data module. The ids endpoint fetches entries
by specifying one or more entry IDs. For each GraphQL API endpoint the same two
types of queries are available: entries and ids. All those API endpoints only offer
consumption of lexical data, no modifications can be made to the underlying dataset,
i.e. only HTTP GET requests are allowed.

3.5 Deployment

Kosh can be deployed in two different ways: Either natively or via Docker. The first
option requires a Unix-based system with Python 3.6+ and Elasticsearch installed and
running. This can be achieved by simply running the included Makefile, which installs
Kosh and all required Python libraries, and providing a suitable configuration either
on Kosh’s command line or via a configuration file.

The second deployment option requires Docker and is the easiest method to deploy and
maintain a Kosh instance. Docker is an operating-system-level virtualization tool which
is popular among developers and administrators due to the possibility of distributing
software packages as containers, i.e. isolated from each other. At the same it time offers
clear and effective ways of bundling them together. To orchestrate containers and
integrate them as services, Docker provides docker-compose42, which in this case is
employed to bundle an Elasticsearch and a Kosh instance together.

When using the included docker-compose.yml and docker-compose.local.yml,
Kosh can be easily setup without the need to install any additional software. Docker
will pull the Elasticsearch and Kosh images from Docker Hub, where they are both
built automatically, i.e. the images always contain the latest versions of Kosh and
Elasticsearch.

Kosh’s source code is available on GitHub. For demonstration purposes, we also provide
another GitHub repository, Kosh Data43, that contains different data modules, so that
users may transfer the structure of Kosh data modules onto their own datasets.

4. Conclusions and further development

In this article, we have presented Kosh and its main goal: To provide efficient and easy-
to-configure access to lexical data. For this purpose, we have described the various
theoretical considerations and technical decisions that have been made: i) Choosing
XML as the data input format, ii) selecting Elasticsearch as Kosh’s storage layer, and

42 Docker Compose, https://docs.docker.com/compose
43 Kosh Data GitHub repository, https://github.com/cceh/kosh_data

919

Proceedings of eLex 2019

iii) adopting REST and GraphQL as its default API paradigms.

Kosh is a stable and high performing microservice that offers cutting-edge technologies
with a relatively low learning curve for users without strong technical skills. Still, if it
is used in production then aspects such as deploying a web server or user analytics
should ideally be addressed by technical staff. Currently, only one field may be queried
via the APIs, while the underlying search engine offers a much more fine-grained query
logic. We plan to expose more of this functionality through Kosh’s APIs in the future.
We also envision the implementation of further API paradigms to enrich Kosh with
more possibilities of serving lexical data. Besides such long-term goals, we are also
committed to accomplish short-term development milestones, including continuous
support in form of upstream library updates and bug fixes.

5. References

Böhtlingk, O. & Roth, R. (1855-1875). Sanskrit-Wörterbuch. St. Petersburg: Kaiserliche
Akademie der Wissenschaften.

Fielding, R. T. (2000). Architectural Styles and the Design of Network-based Software

Architectures. Ph.D. thesis, University of California, Irvine. URL
https://www.ics.uci.edu/~fielding/pubs/dissertation/fielding_dissertation.pdf.

Grassman, H. G. (1873). Worterbuch zum Rig-veda. Wiesbaden: O. Harrassowitz.
Kallas, J., Koeva, S., Kosem, I., Langemets, M. & Tiberius, C. (2019). D1.1

Lexicographic Practices in Europe: A Survey of User Needs. Deliverable D1.1,
Elexis. European Lexicographic Infrastructure. https://elex.is/wp-
content/uploads/2019/02/ELEXIS_D1_1_Lexicographic_Practices_in_Europ
e_A_Survey_of_User_Needs.pdf.

Mangeot, M. & Enguehard, C. (2018). Dictionaries for Under-Resourced Languages:
from Published Files to Standardized Resources Available on the Web. Research
Report, Laboratoire d’informatique de Grenoble. URL https://hal.archives-
ouvertes.fr/hal-02056905.

McCrae, J. P., Bosque-Gil, J., Gracia, J., Buitelaar, P. & Cimiano, P. (2017). The
OntoLexLemon Model: Development and Applications. In I. Kosem et al. (eds.)
Proceedings of the the 5th Biennial Conference on Electronic Lexicography (eLex

2017). Leiden, the Netherlands, pp. 587– 597. https://elex.link/elex2017/wp-
content/uploads/2017/09/paper36.pdf.

Mondaca, F. (2018). C-SALT APIs for Sanskrit Dictionaries: A Novel Approach for
Accessing Digital Lexical Resources Online. Workshop on eLexicography: Between
Digital Humanities and Artificial Intelligence. Co-located with EADH 2018 - Data
in Digital Humanities. December 19, 2018. Galway, Irland.
https://lexdhai.insight-centre.org/Lex_DH__AI_2018_paper_7.pdf.

Monier-Williams, M. (1899). A Sanskrit-English dictionary: Etymologically and

philologically arranged with special reference to Cognate indo-european languages.
Oxford: The Clarendon Press.

Měchura, M. (2016). Data Structures in Lexicography: from Trees to Graphs. In The

920

Proceedings of eLex 2019

10th Workshop on Recent Advances in Slavonic Natural Languages Processing,

RASLAN 2016, Karlova Studanka, Czech Republic, December 2-4, 2016. pp. 97–
104. URL http://nlp.fi.muni.cz/raslan/2016/paper04-Mechura.pdf.

Měchura, M. (2018). Shareable Subentries in Lexonomy as a Solution to the Problem
of Multiword Item Placement. In J. Čibej, V. Gorjanc, I. Kosem & S. Krek (eds.)
Proceedings of the XVIII EURALEX International Congress: Lexicography in

Global Contexts. Ljubljana University Press, Faculty of Arts, pp. 223–232.
http://euralex.org/wp-
content/themes/euralex/proceedings/Euralex%202018/118-4-2964-1-10-
20180820.pdf.

Shevat, A., Sahni, S. & Jin, B. (2018). Designing Web APIs. Sebastopol: O’Reilly
Media.

Tarp, S. (2015). La teoría funcional en pocas palabras. Estudios de Lexicografía, 4, pp.
31–42.

Torvalds, L. (1997). Linux: a Portable Operating System. Master of Science Thesis,
University of Helsinki.

 https://www.cs.helsinki.fi/u/kutvonen/index_files/linus.pdf.

This work is licensed under the Creative Commons Attribution ShareAlike 4.0
International License.

http://creativecommons.org/licenses/by-sa/4.0/

921

Proceedings of eLex 2019

