
From a dictionary towards the Hungarian Constructicon

Bálint Sass
Hungarian Research Centre for Linguistics, Institute for Lexicology

E-mail: sass.balint@nytud.hu

Abstract

We present the Hungarian Constructicon, a lexical resource which is an inventory of
Hungarian constructions. It was derived mostly automatically from a dictionary. Main
step of the processing was to identify constructions in the dictionary and lift them out
and create individual entries for them. The tool is supplemented by a sophisticated online
frontend which applies a so called dynamic toolbox to the constructicon database in order
to be able to give an answer to any one-word or multiword query. Elements of this toolbox
are analysed search, dynamic referencing and virtual entries which contains cross-references
to elements of cxns present in the constructicon. In this way, the constructicon can handle
inflected and derived forms in the query providing all plausible interpretations without
needing to know a specific query formalism. This also covers the cases where a word can
be interpreted as a regular form and an irregular form as well (cf. ǵH2�p2bǶ). The Hungarian
Constructicon combines the advantages of dictionaries and ccns and is equipped with an
intuitive user interface.

Keywords: construction; constructicon; analysed search; dynamic referencing; virtual
entry

1. Introduction

The term +QMbi`m+iB+QM (Lyngfelt et al., 2018b: 97) (Fillmore, 2008: 49) (Jurafsky, 1991:
18) stands for the inventory of constructions of a language – by analogy to the term
H2tB+QMR. Accepting the position of Construction Grammar that utterances are not put
together from words, but by combining cxns, it is quite straightforward that the basic unit
of a lexical resource should be the cxn: a form–function pairing possibly spanning across
linguistic levels. There is a considerable interest in developing (Lyngfelt et al., 2018a) and
investigating (Dunn, 2023) ccns nowadays.

A ccn is not a list-like structure, but rather a network of cxns, employing different kinds of
part-whole relations. Accordingly, a sophisticated cross-reference system is an important
feature of ccns: from a cxn to its parts and vice versa. While in traditional dictionaries
phrasemes, collocations and the like are often treated only incidentally (Fellbaum, 2016),
ccns treat all kinds of meaning-bearing building units with equal care in a unified way
as cxns, regardless of how complex they are. It is common to develop cnns by importing
lexical information from existing lexical resources, especially from FrameNets.

In this paper, we present a Hungarian Constructicon (ccn-hu). The architecture of the
ccn-hu consists of two components. The static part is the actual XML database of the

R 6QHHQrBM; GvM;72Hi UkyR3V r2 rBHH mb2 i?2 �##`2pB�iBQM ++M 7Q` +QMbi`m+iB+QM �M/ +tM UTHm`�H, +tMbV 7Q`
+QMbi`m+iBQM i?`Qm;?Qmi i?Bb T�T2`X q2 BMi`Q/m+2 i?2 i2`K ?2�/@+QMbi`m+iBQM U�##`2pB�i2/ �b ?+tMV
/2MQiBM; �M 2Mi`v BM � ++M #v �M�HQ;v iQ i?2 i2`K ?2�/rQ`/X q?BH2 +tM Bb � +QMbi`m+iBQM BM ;2M2`�H-
?+tM Bb � +QM+`2i2 +tM ?�pBM; �M 2Mi`v BM � ++MX

534



Hungarian cxns containing a structured entry for each cxn. The dynamic part is a set
of tools which processes user input to find out which cxn (or cxns) are to be shown to
the user and how. After discussing the status of single-element entities (Section 2), we
compare the ccn-hu to other lexical resources (Section 3). Then, we elaborate on the static
and the dynamic part in Section 4 and in Sections 5–7 respectively.

2. How many elements does a cxn contain?
An important point of our approach is that single-element units �`2 cxns. Words are cxns,
morphemes are cxns as well. Though this is not a novel idea (Goldberg, 2006: 5), we
emphasize this here. In general, the cxn used to be a multi-element entity while the word
(or the morpheme) is a single-element entity. Therefore, a common criterion for a cxn is to
consist of at least two elements. Our idea is to include all units of meaning (Teubert, 2005)
in the ccn regardless the number of their sub-elements. Namely, single-element entities
are also treated as cxns, albeit a somewhat special case of them. The fundamental goal
of ccns is to be able to handle all linguistic units in a unified way and allow the user to
find all kinds of meaning-bearing units in them. By analogy, it is like to treat 1 (one) just
like other positive integers, despite it is quite special being neither prime nor composite.
This decision makes it easier to come up with simpler general descriptions of numbers or
simpler methods which can handle all of them. We anticipate that the similar decision
in lexicology, i.e. the inclusion of single-element entities into the notion of cxn, will have
similar advantages.

Covering single-element entities, ccns can integrate dictionaries into themselves. In this
way, a ccn can grasp the complete network of the language and show the connections
between linguistic units.

3. Comparison to other lexical resources
In this section, we compare the Hungarian Constructicon to other ccns and then to some
online dictionaries. As the ccn-hu contains single-element entities (e.g. simple words)
as well (see Section 2), it can be considered a dictionary from a certain point of view,
accordingly, the latter comparison is also relevant.

3.1 Comparison to ccns: Swedish and Russian

Many ccns have been created in recent years. We compare the approach and features
of ours (ccn-hu) to the Swedish (Lyngfelt et al., 2018b) (ccn-sw) and to the Russian
Constructicon (Janda et al., 2020; Bast et al., 2021) (ccn-ru) as well.

Size. Ccn-sw contains 393 cxns, ccn-ru contains 2277 cxns while ccn-hu contains more
than 13000 cxns in the current version. It should be noted that the Hungarian cxns are
less abstract for the most part. E.g. ccn-sw contains many high-level cxns like ǵ�`iBF2HǶ
(‘article’) or ǵT�bbBpǶ (‘passive’), but contains several more concrete cxns at the same time,
like ǵ�MiBM;2M s 2HH2` uǶ (‘either X or Y’) or ǵ/`� P"CǶ (‘drag OBJ’) and non-mutable
fixed ones like ǵ#H� #H� #H�Ƕ (‘and so on’). The latter are also characteristic of ccn-hu.

Formalizedness. In our view, ccns should be formalized to the most possible extent
rendering the database as machine readable as possible. We consider the level of formal-

535



ization to be low for both examined ccns. They seem to be just human readable, not
inherently machine readable. This is future work for ccn-hu as well.

Connection to FrameNet. As the original English Constructicon (Fillmore, 2008)
used FrameNet as starting point, it is somewhat surprising that none of the three ccns in
question is directly connected to the corresponding FrameNet.

Single-element units. Differently from ccn-hu, neither ccn-sw nor cnn-ru contains
single-element units.

Availability. Data of ccn-ru is freely available, it is in fact a simple X+bp table. For
ccn-sw, the whole cxn-list can be copied from the website. Concerning ccn-hu, the query
interface will be freely usable for personal and research use, it is not decided yet whether
the software and the data itself will be freely available or not.

3.2 Comparison to online dictionaries: DWDS and OALD

Here, we compare the ccn-hu to online dictionaries: DWDS (BBAW, 2023) and OALD
(Oxford University Press, 2023) according to various aspects.

Multiword input. DWDS can not handle simple multiword input like ǵ/�b "m+?Ƕ. While
ǵxm` o2`7Ƀ;mM; bi2HH2MǶ is not handled, ǵxm` o2`7Ƀ;mM; ?�#2MǶ is. OALD does not respond to
ǵ#H�+F /Q;Ƕ. Creating ccn-hu, one of our important aims is to be able to handle multiword
input, even to give an answer to any possible query.

Irregular inflection. On the one hand, it is common that the irregular forms are included
in dictionaries. DWDS is at least not totally complete in this sense as to the query ǵ"Ƀ+?2`Ƕ
it responds with the entry of ǵ/2` "m+?2`Ƕ (booker) which is misleading. Similarly, ǵ?�biǶ
takes the user to ǵ/B2 >�biǶ. However ǵxB2?biǶ works well. These kind of redirecting is
solved in ccn-hu by analysed search (see Section 5), cf. ǵHQp�iǶ (ǵHƦǶ (horse) in accusative
case).

On the other hand, it is also common that the regular forms are not included in dictionaries.
Maybe they are considered out-of-scope and set aside as being part of “grammar”. In
OALD ǵ#QQFbǶ silently redirects to ǵ#QQFǶ, it does not tell the user any information about
the connection between the query and the resulting entry. For a language learner, this
connection can be important. It holds especially for morphologically richer languages, it
seems to be a good behaviour for a Finnish dictionary/ccn to respond with ǵi�HQǶ (house)
+ ǵ@bb�f@bb Ƕ (in) to the query ǵi�HQbb�Ƕ. This kind of redirecting is also solved in ccn-hu,
cf. ǵ�bxi�HiǶ (ǵ�bxi�HǶ (table) in accusative case).

The most problematic case combines the above too: some word forms represent an irregular
form of a word and a regular form of another word at the same time. In these cases
dictionaries tend to present the irregular solution and tend to hide the regular, which
can be misleading. Consider the English word form ǵH2�p2bǶ and enter it to OALD. The
irregular plural of ǵH2�7Ƕ will be provided but the third person singular of ǵH2�p2Ƕ does not.
This solved in ccn-hu as well, cf. ǵi2`2KǶ.

Use what you have. We take the position that it is better to have an incomplete entry
for a cxn than nothing. DWDS responds to query ǵL�;2HH�+F2Mi72`M2`Ƕ with a partial entry

536



which contains cross-references to ǵL�;2HH�+FǶ and ǵ1Mi72`M2`Ƕ and some corpus examples,
but no definition (cf. Janssen, 2008). This is clearly an automatically generated entry,
but a very useful one: it helps the user understand the queried word. Virtual entries (see
Section 7) implement this feature in ccn-hu.

Down-references. Cross-references from a cxn to its parts can be called /QrM@`272`2M+2b.
DWDS do have down-references under ǵqQ`ix2`H2;mM;Ƕword decomposition. OALD has it
as well, it is accessible by double-clicking elements of cxns (see e.g. ǵ`2/ ?2``BM;Ƕ). The
ccn-hu has down references for every unit which has elements.

Formalizedness. Dictionaries are generally optimized for human-readability, so they
tend to be less formalized compared to ccns. For example, DWDS still uses old-fashioned
textual abbreviations like ǵ2irX DK/XǶ.

We note that ccn-hu could be compared to a machine translation system too. The big
picture is that such a systems usually work as a dictionary for one-word queries and as a
translator for multiword queries, the ccn-hu works like a dictionary for multiword queries
as well.

4. Lifting out cxns from a dictionary
In this section, we cover the static part of the ccn-hu, i.e. how we created its XML database.

In absence of a Hungarian FrameNet, we started from a monolingual dictionary and derive
the ccn to a great extent automatically. Our initial dictionary was (Pusztai, 2003) which
is a common reference work for Hungarian and contains more than 73000 entries. The
automatic ccn-creation process was carried out as described in the following.

Firstly, we carried out some basic XML preprocessing: fixed UTF-8 character encoding,
normalized whitespaces and lowercased the whole dictionary. Then we made the initial
XML a bit more data-centric converting some text nodes to attribute nodes. For example,
the homonymy indexes were converted from I?QK=RIf?QK= to I?QK p�Hm24]R]f=. This
was a simple p2`iB+�H QT2`�iBQM, i.e. a transformation which affects the dictionary as a
whole at once.

After that we identified cxns in the “collocation” part of the dictionary entries (marked by
the I+QHH= element in the initial XML), we lifted out the XML subtree representing the
cxn and created a new individual entry for it on its own. The lemma of the new entry
becomes the textual form of the cxn and part-of-speech is set to ”cxn” simply. Then
we created cross-references from the original place of the cxn to the newly created entry.
(These links are colored green in the user interface, see Section 9.) Thus, an additional
14000 entries were added to the ccn being prepared.

An online lexical resource does not encounter any size limits, so we resolved common
abbreviations and the tilde (≥) headword placeholder. The latter was not a trivial task as
due to traditional practice in Hungarian lexicography in some cases the headword had to
be altered before replacing the tilde.

In the final step we converted the ccn into a HTML form which is suitable for displaying
and easily queryable using XSLT at the same time and added the entry–query links (see
Section 8). Then, the finished material was put behind a Flask frontend for online use.

537



Goldberg (2006: 5) presents a long list of cxn types. Many different types appear in our
final ccn database: bound morphemes, simple words, compound words, filled idioms. All
these are non-mutable, continuous cxns. Handling more complex, mutable, non-continuous
or partially filled cxns remains a future work (see Section 10).

5. Analysed search
Interacting with a ccn, you should have the opportunity to search for cxns not just words.
We will introduce a new type of search called �M�Hvb2/ b2�`+? – suitable for ccns – to
eliminate the need for users (e.g. language learners) to learn a formal language or a
specific search tool (Sato, 2012). The user is allowed to enter free text in a plain search
box, then we apply automatic morphological analysis to the text, and direct the user to
the appropriate identified cxn(s). This process is applied to the ccn database described
in Section 4 and performed for every type of cxn from simple or compound words to
e.g. preverb-verb combinations.

Hungarian is a morphologically rich language (Megyesi, 1998) with an extensive inflectional
and derivational system. Additionally, coumpounding is also happens inside the word,
i.e. compounds are written together as one word. We use the 2@K�;v�` system (Indig
et al., 2019) for processing user input. The 2KJQ`T? (Novák et al., 2016) morphological
analyser module can break down words into morphemes, for example ǵ;v2`2F2F2iǶ is broken
down to these elements: ǵ;v2`2FǶ (‘child’) + ǵ@FǶ (‘plural’) + ǵ@iǶ (‘accusative case’), or
ǵ?�i�HK�MǶ to these: ǵ?�i�HQKǶ (‘power’) + ǵ@�Ƕ (‘possessive suffix’) + ǵ@MǶ (‘on’). This is
exactly what is needed because the basic elements of cxns are morphemes.

The algorithm of analysed search is the following for a one-word input:

1. if the input is a hcxn on its own, take it into account;
2. perform the morphological analysis;
3. consider all analyses and take one segmentation from each: choose the segmentation

with the longest left side part which is a hcxn;
4. we omit possible duplications collecting results into a set.

If there are several alternative results at the end, all of them are considered and presented
one after another.

There has been a long-standing debate about whether a certain Hungarian word is
compound or not, what is the lemma (the base form) of a certain Hungarian word,
i.e. which derivational suffix should be removed and which one should not. Our approach
allows us to put this debate aside. Taking the ccn itself as an oracle, we say that if a
compound or a derived form is present as a hcxn, then it is accepted as is. An example
concerning compounds: ǵ`2M/ǒ`Ƕ (‘order guard’ = policeman) will be presented as a cxn as
it is a hcxn, while ǵF�Tmǒ`Ƕ (‘gate guard’ = gatekeeper) will be presented as a compound of
two words ǵF�TmǶ (gate) and ǵǒ`Ƕ (guard). The 3rd point of the above algorithm implements
this mode of operation.

We note that analysed search is one of the rare cases where a classic low-level natural
language processing tool, i.e the morphological analyser, can be used not only for solving
a subtle subtask but also directly to meet the needs of end users.

538



We also note that applying analysed search we make heavy use of the fact that the
Hungarian Constructicon is an inherently online tool. It would be hard to include e.g. all
compound words future users may ever think of in a printed dictionary.

6. Identification of cxns

In Section 5 we discussed the case of one-word input only. It is important that the input
can be multiword naturally, in fact it can be any linguistic element or combination: a
morpheme, a word, a phrase or even a short text. A major task is to be able to identify
(possible multiword) cxns in multiword input. While a complete solution – handling
e.g. complex non-continuous verbal cxns – remains future work (see Section 10), there is
already a partial solution of this task handling two easier cases.

On the one hand, the system recognizes non-mutable continuous cxns on their own or
even as a part of a query. The algorithm matches the input text greedily to the hcxns and
gives the longest one as a result. For example, as ǵ�/ ?Q+Ƕ and ǵ�/ ?Q+ #BxQiib�;Ƕ (ad hoc
committee) are both hcxns the queries presented in Table 1 will provide the cxns shown.

query identified cxns
(a) ǵ�/ ?Q+ /QHQ;Ƕ ǵ�/ ?Q+Ƕ + ǵ/QHQ;Ƕ (thing)
(b) ǵ�/ ?Q+ #BxQiib�; /ƺMiǶ ǵ�/ ?Q+ #BxQiib�;Ƕ (ad hoc committee) + ǵ/ƺMiǶ (decides)

Table 1: An illustration of the operation of the greedy cxn-identification algorithm. If
there is a choice (see (b)), the longer cxn will be identified.

On the other hand, the system recognizes a kind of non-continuous cxns as well, namely
the preverb-verb combinations. While the 2KJQ`T? morphological analyser module (see
Section 5) does all kinds of analyses inside tokens, 2KS`2p2`# (Pethő et al., 2022) module
adds the functionality of connecting separated preverb tokens to their verbs. In Hungarian
the preverb (or verbal prefix) is written together with the verb in certain cases, but it
constitutes an independent token in others, placed possibly several words away from the
verb (cf. Megyesi, 1998: 9). The algorithm loops over the tokens of the input. Processing a
verb, the algorithm picks up the corresponding preverb (if there is one), connects it to the
verb and reanalyses the resulting connected form, and when it comes to a preverb which is
already connected, the algorithm simply skips it. Table 2 shows an example of this feature
using ǵ#2DƺMǶ (come in) in which ǵ#2Ƕ (in) is the preverb and ǵDƺMǶ (come) is the verb.

query identified cxns
(a) ǵ#2DƺMǶ ǵ#2DƺMǶ (come in)
(b) ǵKQbi DƺM #2Ƕ ǵKQbiǶ (now) + ǵ#2DƺMǶ (come in)

Table 2: An illustration of preverb-verb cxn identification. The separated preverb in query
(b) is handled properly.

539



7. Dynamic referencing and virtual entries

Analysed search (Section 5) is supplemented by a novel cross-referencing process called
/vM�KB+ `272`2M+BM;. If the search query does not have a matching cxn, but its parts
do, a so called pB`im�H 2Mi`v is created on-the-fly automatically: containing nothing but
references to the parts. For example, ǵ�HK�7�Ƕ (apple tree) is a hcxn, so the user will
get its entry immediately, but ǵ;`ûT7`ȹi7�Ƕ (grapefruit tree) is not, so the virtual entry
created will contain a link to ǵ;`ûT7`ȹiǶ (grapefruit) and another to ǵ7�Ƕ (tree) beyond the
information that the original query is a compound construction.

Perhaps it is not surprising that an overwhelming majority of possible queries will result
in a virtual entry. Let us review the following cases from the simplest to the most complex
using different cxns, all containing the morpheme ǵ�bxi�HǶ (table).

1. Simple word. The query for a simple word, e.g. ǵ�bxi�HǶ will simply provide its
original real entry from (Pusztai, 2003). Words that do have an inner structure but
present in the ccn as a hcxn on their own will behave the same way, see e.g. ǵ�bxi�HQbǶ
(‘table + @b suffix’ = carpenter). Results for all the other query types below will be
virtual entries.

2. Suffixed word. For example, ǵ�bxi�H`�Ƕ (‘table+onto’ = onto table) not being
a hcxn on its own, will be analysed and its two parts will be shown in a virtual
entry as ǵ�bxi�HǶ (table) + ǵ@`�f@`2Ƕ (onto). Fortunately, case markers and other
suffixes like ǵ@`�f@`2Ƕ have a real entry in the initial dictionary already, so they can
be presented using a hand-crafted mapping between 2KJQ`T? codes and them.

3. Compound word. Compounds are treated similarly as they are cxns containing
more than one morphemes just like suffixed words. For example, ǵ7��bxi�HǶ (wooden
table) will result in a virtual entry containing ǵ7�Ƕ (wooden) + ǵ�bxi�HǶ (table).

4. Sequence of words. Word sequences are firstly tokenized using the 2KhQF2M
tokenizer module (Mittelholcz, 2017) and then treated according to point 2 token
by token. The result will be a sequence of (virtual) entries, for example ǵ?�`QKǶ
(three) and ǵ�bxi�HǶ (table) for the query ǵ?�`QK �bxi�HǶ (three table).

5. Non-mutable continuous cxn. Fixed continuous cxns are identified inside query
text (see Section 6), so ǵM2K �x ǒ �bxi�H�Ƕ (‘not his table’ = none of his business)
will be found and its original entry will be presented.

6. Non-continuous preverb-verb cxn. These cxns are also identified (see Section 6),
and will be presented as a real or a virtual entry.

7. Handling more complex cxns remains future work, see Section 10.

What if the meaning is more than the meaning of the parts presented in the virtual entry?
This is a matter of completeness of the ccn. If a cxn is not present in the ccn, we can not
do anything but show information about the parts of it. Obviously, in the present version
of the Hungarian Constructicon we can only work with those cxns that were included in
the initial dictionary.

We do not think that our ccn is complete in any sense, it just contains quite a large
amount of cxns. Instead of trying to make the ccn complete at all costs, we focus on
making it easy to expand. Clearly, any expansion will influence dynamic referencing as it
will decrease the need for virtual entries. If a brand new entry for ǵ;`ûT7`ȹi7�Ƕ (grapefruit

540



tree) will be added in the future to the ccn, its own real entry will be presented for this
query and virtual entry creation will no longer be needed thenceforth. This behaviour was
successfully tested in the system.

We can refer to analysed search, dynamic referencing and virtual entries together as i?2
/vM�KB+ iQQH#Qt. The point of the dynamic toolbox is that it allows the ccn to give an
answer �Hr�vb to �Mv queries to the best of its ability. If the ccn itself improves, the
responses will improve as well.

8. Entry–query links
Ccn-hu will also offer a feature called 2Mi`vĜ[m2`v links, which adds to its overall conve-
nience. This is a kind of cross-referencing system from a lexicographic perspective and a
user-friendly feature from user experience point of view.

It means that every word in the text of real or virtual entries functions as a link to start a
query that looks up the word itself in the ccn. Unsuprisingly, the entry for ǵb�`;�Ƕ (yellow)
contains the word ǵ+Bi`QKǶ (lemon) in the definition part. Just click on +Bi`QK to reach the
entry of this very word. The whole dynamic toolbox machinery described in the previous
sections will start working as if it would be a query entered directly by the user. This
allows us to add entry–query links to every word appearing in the entries.

This feature can help investigating the ccn itself as a subject of lexicological research. We
can examine lexical loops (cf. Levary et al., 2012), or the question whether members of
the definition vocabulary are themselves defined (cf. Atkins & Rundell, 2008: 448).

9. Availability
The Hungarian Constructicon is available for the scientific community and the general
public as well at ?iiT,ff++MXMvim/X?mfBMi`Q. Please authenticate (username: 2G2tkykj
password: H2ibb22 ) and feel free to try all examples typesetted like ǵTûH/�Ƕ presented in
this paper.

The user interface consists of a simple search box and a short description of the system.
There are some clickable examples in the description text. A small icon to the right of
the a2�`+? button gives some information about what is going on in the background: 3
means that the result is a real entry (cf. point 1 in Section 7); 7 means that no result can
be provided; and the magic wand which appears in other cases means that some elements
of the dynamic toolbox was applied.

The implementation is based on python3, Flask, XML, lxml and XSLT technologies.
Recognizing non-mutable continuous cxns (Section 6) uses a simple hash for finding cxns.

10. Future work
There are many directions in which our works can be further developed. Some of them
are listed below from easy ones to difficult ones.

• Create mT@`272`2M+2b, i.e cross-reference every cxn from the entries of its elements
(cf. /QrM@`272`2M+2b in Section 3.2).

541

http://ccn.nytud.hu/intro


• Test the Hungarian Constructicon with end users, collect and investigate real life
queries, and shape further development along the learned lessons.

• Integrate other lexical resources which can be used as a cxn source (e.g. Sass &
Pajzs, 2010).

• To support the tasks below, develop a formal representation of cxns, or use an
existing one, if possible.

• Handle inflected form of multiword cxns. Can be considered as a special case of
the next one.

• Handle complex non-continuous verbal cxns with or without free slots (cf. point 7
in Section 7). The difficulty of this task lies in the fact that elements (words and
bound morphemes) of this kind of cxns can appear in several different order with
possible intervening words. The representation is to be worked out as well as the
algorithm which can efficiently use it. Dependency parsing may have a role in the
solution.

• Refer to the appropriate meaning of any cxn and “grey out” the others on the user
interface. Seems to be a very hard problem.

11. Summary
In this paper, we presented the current version of the Hungarian Constructicon (ccn), a
lexical resource which is an inventory of Hungarian constructions (cxns). The ccn was
derived mostly automatically from a dictionary. To be able to handle all kinds of linguistic
units in a uniform way we included morphemes and words into the category of cxns. The
main step of the processing was to identify cxns in the dictionary and lift them out creating
individual entries for them. The number of entries was increased by about 20 percent in
this way.

The ccn is supplemented by a sophisticated online frontend which applies a so called
dynamic toolbox to the ccn database in order to be able to give an answer to any one-word
or multiword query. Elements of this toolbox are analysed search which provides an
analysed version of the input query, dynamic referencing which creates virtual entries
containing cross-references to elements of cxns which are not present in the ccn.

In this way, the ccn can handle inflected and derived forms in the query providing all
plausible interpretations without needing to know a specific query formalism. This also
covers the cases where a word can be interpreted as a regular form and an irregular form
as well like in case of the English example ǵH2�p2bǶ or Hungarian example ǵi2`2KǶ.

Combining the advantages of dictionaries and ccns we consider our methodology a step
towards creating a general purpose “ultimate” lexical resource.

12. References
Atkins, B.T.S. & Rundell, M. (2008). h?2 Pt7Q`/ :mB/2 iQ S`�+iB+�H G2tB+Q;`�T?v. Oxford

University Press.
Bast, R., Endresen, A., Janda, L.A., Lund, M., Lyashevskaya, O., Mordashova, D., Nesset,
T., Rakhilina, E., Tyers, F.M. & Zhukova, V. (2021). The Russian Constructicon. An
electronic database of the Russian grammatical constructions. URL https://constructi
con.github.io/russian.

542

https://constructicon.github.io/russian
https://constructicon.github.io/russian


BBAW (2023). DWDS – Digitales Wörterbuch der deutschen Sprache. Das Wor-
tauskunftssystem zur deutschen Sprache in Geschichte und Gegenwart. URL https:
//www.dwds.de.

Dunn, J. (2023). Exploring the Constructicon: Linguistic Analysis of a Computational
CxG. In S`Q+22/BM;b Q7 i?2 qQ`Fb?QT QM *t:b �M/ LGS f avMi�t62bi. Association for
Computational Linguistics.

Fellbaum, C. (2016). The Treatment of Multi-word Units in Lexicography. In P. Durkin
(ed.) h?2 Pt7Q`/ >�M/#QQF Q7 G2tB+Q;`�T?v. Oxford: Oxford University Press, pp.
411–424.

Fillmore, C.J. (2008). Border Conflicts: FrameNet Meets Construction Grammar. In
E. Bernal & J. DeCesaris (eds.) S`Q+22/BM;b Q7 i?2 sAAA 1l_�G1s AMi2`M�iBQM�H
*QM;`2bb. Barcelona: Universitat Pompeu Fabra, pp. 49–68.

Goldberg, A.E. (2006). *QMbi`m+iBQMb �i rQ`F, h?2 M�im`2 Q7 ;2M2`�HBx�iBQM BM H�M;m�;2.
Oxford University Press.

Indig, B., Sass, B., Simon, E., Mittelholcz, I., Vadász, N. & Makrai, M. (2019). One
format to rule them all – The 2Kibp pipeline for Hungarian. In S`Q+22/BM;b Q7 i?2
Rji? GBM;mBbiB+ �MMQi�iBQM qQ`Fb?QT. Florence, Italy: Association for Computational
Linguistics, pp. 155–165. URL https://www.aclweb.org/anthology/W19-4018.

Janda, L., Endresen, A., Zhukova, V., Mordashova, D. & Rakhilina, E. (2020). How to
build a constructicon in five years: The Russian example. "2H;B�M CQm`M�H Q7 GBM;mBbiB+b,
34, pp. 162–175.

Janssen, M. (2008). Meaningless Dictionaries. In E. Bernal & J. DeCesaris (eds.) S`Q+22/@
BM;b Q7 i?2 sAAAX 1l_�G1s AMi2`M�iBQM�H *QM;`2bb. Institut Universitari de Lingüística
Aplicada, Universitat Pompeu Fabra, Barcelona, pp. 409–420.

Jurafsky, D. (1991). �M PM@HBM2 *QKTmi�iBQM�H JQ/2H Q7 >mK�M a2Mi2M+2 AMi2`T`2i�iBQM, �
h?2Q`v Q7 i?2 _2T`2b2Mi�iBQM �M/ lb2 Q7 GBM;mBbiB+ EMQrH2/;2. Ph.D. thesis, Department
of Electrical engineering and computer sciences, University of California, Berkeley.

Levary, D., Eckmann, J.P., Moses, E., & Tlusty, T. (2012). Loops and Self-Reference in
the Construction of Dictionaries. S?vbX _2pX, X(2), p. 031018.

Lyngfelt, B. (2018). Introduction: Constructicons and constructicography. In Lyngfelt
et al. (2018a), pp. 1–18.

Lyngfelt, B., Borin, L., Ohara, K. & Torrent, T.T. (eds.) (2018a). *QMbi`m+iB+Q;`�T?v,
*QMbi`m+iB+QM /2p2HQTK2Mi �+`Qbb H�M;m�;2b. Amsterdam: John Benjamins.

Lyngfelt, B., Bäckström, L., Borin, L., Ehrlemark, A. & Rydstedt, R. (2018b). Construc-
ticography at work: Theory meets practice in the Swedish Constructicon. In Lyngfelt
et al. (2018a), pp. 41–106.

Megyesi, B. (1998). The Hungarian Language: A Short Descriptive Grammar.
Mittelholcz, I. (2017). 2KhQF2M: Unicode-képes tokenizáló magyar nyelvre. [2KhQF2M: a

Unicode-capable tokenizer for Hungarian.]. In V. Vincze (ed.) JawLukyRd. Szegedi
Tudományegyetem, Informatikai Tanszék csoport, pp. 70–78.

Novák, A., Siklósi, B. & Oravecz, Cs. (2016). A New Integrated Open-source Morphological
Analyzer for Hungarian. In N. Calzolari, K. Choukri, T. Declerck, S. Goggi, M. Grobelnik,
B. Maegaard, J. Mariani, H. Mazo, A. Moreno, J. Odijk & S. Piperidis (eds.) S`Q+22/BM;b
Q7 i?2 h2Mi? AMi2`M�iBQM�H *QM72`2M+2 QM G�M;m�;2 _2bQm`+2b �M/ 1p�Hm�iBQM UG_1*
kyReV. Paris, France: European Language Resources Association (ELRA).

Oxford University Press (2023). Oxford Advanced Learner’s Dictionary. URL https:
//www.oxfordlearnersdictionaries.com.

543

https://www.dwds.de
https://www.dwds.de
https://www.aclweb.org/anthology/W19-4018
https://www.oxfordlearnersdictionaries.com
https://www.oxfordlearnersdictionaries.com


Pethő, G., Sass, B., Kalivoda, Á., Simon, L. & Lipp, V. (2022). Igekötő-kapcsolás
[Connecting perverbs to verbs]. In G. Berend, G. Gosztolya & V. Vincze (eds.) JawLu
kykk. Szegedi Tudományegyetem, Informatikai Intézet, pp. 77–91.

Pusztai, F. (ed.) (2003). J�;v�` ú`i2HK2xǒ EûxBbxƦi�` (>mM;�`B�M JQMQHBM;m�H 1tTH�M�iQ`v
.B+iBQM�`v). Akadémiai Kiadó.

Sass, B. & Pajzs, J. (2010). FDVC – Creating a Corpus-driven Frequency Dictionary of
Verb Phrase Constructions for Hungarian. In S. Granger & M. Paquot (eds.) S`Q+22/BM;b
Q7 2G2t kyyN. Louvain-la-Neuve: Presses universitaires de Louvain, pp. 263–272.

Sato, H. (2012). A Search Tool for FrameNet Constructicon. In S`Q+22/BM;b Q7 i?2 1B;?i?
AMi2`M�iBQM�H *QM72`2M+2 QM G�M;m�;2 _2bQm`+2b �M/ 1p�Hm�iBQM UG_1*ǶRkV. Istanbul,
Turkey: European Language Resources Association (ELRA), pp. 1655–1658.

Teubert, W. (2005). My version of corpus linguistics. AMi2`M�iBQM�H CQm`M�H Q7 *Q`Tmb
GBM;mBbiB+b, 10(1), pp. 1–13.

544


