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Abstract 

Our study explores the possibility of using the distributional characteristics of headwords as 
exemplified in the online Oxford Learner’s Dictionaries, captured by contextualized word 
embeddings and displayed in two dimensions to help lexicographers find sense categories, detect 
variations across senses and select potential example sentences. In addition to the dictionary 
examples, we added British National Corpus data that contained the headwords. BERT word 
embeddings were extracted for all occurrences of the headword, then two-dimensional 
representations of the resulting high-dimensional BERT embedding vectors were created using 
4 algorithms: MDS, Isomap, Spectral and t-SNE. Clustering was assisted by k-means clustering 
and Silhouette scoring for different k values. Our investigation showed that Silhouette scores 
for k-means increased after dimension reduction; furthermore, spectral and t-SNE visualizations 
were associated with the most cohesive clusters. The highest Silhouette scores recommended a 
number of clusters different from the number of dictionary senses, but semantic and syntactic 
patterns were detectable across the recommended clusters. 

Keywords: sense delineation; word embedding visualization; BERT 

1. Introduction 

Lexicography is open to incorporating advances in information technology, especially 
when a large amount of manual labour can be substituted. Consider how quickly 
concordancing became computerized, also the swift adaptation of database 
management systems to store lexicographic data, or the introduction of methods for 
quantitative corpus analysis, including those for detecting potential collocations via 
scoring first-order (syntagmatic) word co-occurrence patterns using t-score, MI-score, 
etc.  

The idea that word distribution can be directly exploited for capturing meaning was 
pointed out by Firth (1957), who famously argued that the meaning of a word is 
distributed over the neighbouring words, or the company that words keep. Words may 
be distributionally similar (therefore, they appear in paradigmatic relations in their 
second-order co-occurrence patterns) for semantic and structural reasons; the presence 
of the semantic component is now being actively exploited in Natural Language 
Processing and Artificial Intelligence research. In what follows, we will refer to this area 
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of interest as Distributional Semantics (DS; cf. Lenci, 2008). 

In the 2010s, the quick spread of connectionist language modelling and the eventual 
introduction of Large Language Models (LLMs) changed Distributional Semantics in 
its implementation, and expanded the range of applications in Natural Language 
Processing. Machine learning algorithms based on artificial neural networks get 
distributional data from large amounts of text while learning to solve distribution-
related tasks (such as masked-word prediction, next-word prediction and context 
prediction). While doing so, they internally characterize the tokens of the text that 
they are processing; we call these internal characterizations word embeddings. The latest 
generation of LLMs, which includes the ELMo model (Peters et al., 2018), BERT 
(Devlin et al., 2019) and GPT (Radford et al., 2018), are designed to dynamically 
associate actual uses of tokens with their distributional features, giving us 
contextualized embeddings. It is reasonable to evaluate whether contextualized word 
embeddings can be used for identifying senses for lexicographic use, too. 

Sense delineation presents a significant challenge to practicing lexicographers, given the 
complexity and fuzziness of meaning categories. Explaining the meaning of a simple 
word such as dog requires knowledge about multiple semantic fields including shape, 
movement and sound. Linguists have the means to discuss the complexity of the 
meaning of words and how they may overlap when sharing the same conceptual base 
or schematic structure (e.g. Langacker, 1999; Lakoff, 1987 and Fillmore & Atkins, 1992). 
Lexicographers, however, need to represent word meaning as a finite list of senses. In 
this regard, deducing word senses from corpus uses is very challenging. Using the target 
word as part of a name or sublanguage is likewise problematic for lexicographers. 
Lexicographers have to decide whether this is a different unpredictable sense that 
should be recorded in a dictionary or not. Moreover, non-standard word use always 
depends on deviation from the known use. However, the new use is not always salient 
for users, specifically if triggered by a combination of words rather than a single target 
word (Kilgarriff, 2007). 

In this paper, we explore the possibility of employing BERT word embeddings as tools 
for identifying senses of words as they appear in dictionary examples and also in 
additional corpus sentences. Section 2 of this paper discusses related work in the 
literature. Section 3 presents the methodology of the current research from data 
collection, through producing 2-dimensional visualizations that may assist lexicographic 
work, to the examination of the clusters. Section 4 has the qualitative analysis of the 
visualizations for the four words that we have selected for this analysis. Our concluding 
remarks are presented in Section 5, where we also discuss the limitations of our research. 

2. Related work 

Rychlý & Kilgarriff (2007) offered a DS method for building distributional thesauri. 
They used a corpus of lemmatized and parsed language to gather information about 
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how words are used in context, including the grammatical relations between a target 
word and other (context) words in sentences. The method then identifies other words 
that share similar contexts. This function is also available in the Sketch Engine, where 
“Sketch differences” rely on lexical collocates and grammatical relations in the contexts 
to show how (dis)similar two words are (Kilgarriff et al., 2014). This type of information 
has been useful in unveiling word senses that are not present in dictionaries (see, for 
instance, Abdelzaher & Tóth, 2020). The “Sketch differences” tool does not use 
contextualized word embeddings. 

Jatowta, Tahmasebi & Borin (2021) give a review of the literature that tracks meaning 
change in a diachronic setting using distributional data of words, and tackle the 
question of visualization, too. The paper illustrates that even static embeddings can 
help us compare different states of the language if we generate snapshots for the states 
under scrutiny, generate static embeddings for them and compare these embeddings. 
Unfortunately, static embeddings contain a mix of all senses, all usages of the given 
word, so they cannot directly help the sense delineation process. The possibility of using 
contextualized word embeddings is pointed out by the authors as a possible future 
direction. 

Montes & Heylen (2022) visualize distributional semantic data for testing different 
word embedding parameter sets (which is common practice with static “count-type” 
embeddings) and also for checking the distributional properties of the word under 
scrutiny – the Dutch word heffen with 2 senses. Their study is presented in the context 
of cognitive linguistics. In our present paper, we utilize a single, pre-trained 
distributional model that implements a modern contextualized word embedding type 
designed to collect token-level distributional information in a context-sensitive way; the 
parameters that we test are related to the visualization step rather than distribution 
modelling, and our focus is on sense delineation within the context of lexicography.  

In our work, we use BERT word embeddings (Bidirectional Encoder Representations 
from Transformers; Devlin et al., 2019), which is a well-established contextualized 
embedding type in Natural Language Processing. BERT is based on the Transformer 
architecture (Vaswani et al., 2017). The model learns to predict a masked word in a 
sentence and to decide if two sentences appeared sequentially in the training corpus. 
As a contextualized model, BERT captures the distributional properties of actual uses 
of words (more precisely, those of tokens in its vocabulary) in given contexts. Outside 
of the field of lexicography, contextualized word embeddings have been proven to form 
distinct clusters corresponding to different word senses in Wiedemann et al. (2019).  
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3. Methods 

3.1 Data collection 

In our analysis, we created two-dimensional (2D) visualizations of BERT embeddings 
for instances of four headwords: full, mouth, risk and sound, as exemplified in dictionary 
example sentences and found in the British National Corpus. 

The professionally selected and edited dictionary examples were taken from the online 
Oxford Learner’s Dictionaries at http://www.oxfordlearnersdictionaries.com (OD). We 
took all examples (including the “Extra Examples”) of the selected headwords in all 
senses, but we had to discard those examples that contained an inflected form of the 
headword, as inflected forms are treated as different BERT tokens (which may get 
related in their representations, but the analysis of the relation between the embeddings 
of headwords and inflected forms is beyond the scope of this paper) or, in some cases, 
sequences of tokens. Hornby’s Idiomatic and Syntactic English Dictionary (Hornby, 
1948), which is known for its inclusion of syntactic information and its focus on word 
complementation, is part of OD’s heritage, which may be reflected in the example 
sentences OD provides for each word sense. For this reason, different syntactic patterns 
corresponding to different senses are expected to stand out in the visualized 
representations.  

The additional corpus sentences (1000 for each headword) were taken from the British 
National Corpus (BNC) available via http://www.sketchengine.eu. We used the 
sentence concordancer option, looked up the word, shuffled the output and exported 
the data. We did not filter for part of speech. While BNC may not be the most extensive 
or most up-to-date corpus of English, it is a balanced representation of British English 
(Leech, 1992). We collected examples that contained the exact headword.  

3.2 Creating BERT embeddings 

We produced contextualized word embeddings for the headwords in the dictionary 
example sentences and corpus examples. The embeddings were created using the 
Huggingface BERT libraries (https://huggingface.co). We relied on a pre-trained BERT 
model (bert-large-uncased, https://huggingface.co/bert-large-uncased) and the 
corresponding bert-large-uncased tokenizer from Huggingface. The BERT-large model 
contains 336 million trained parameters with 24 layers and 16 attention heads. We did 
not fine-tune the network, as we wanted to visualize pure distributional data acquired 
for the standard BERT learning goals. The resulting word embeddings were vectors 
that contained 1024 floating point numbers for each use of the given headword in the 
dictionary examples and corpus sentences; we used the embedding developed in the last 
layer of BERT in the position of the target word. According to the distributional 
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hypothesis, more similar uses of the target words are in closer proximity to one another 
when we visualize distributional feature vectors in the resulting 1024-dimensional space. 

3.3 Dimension reduction 

We used manifold learning algorithms for dimension reduction from 1024 to 2 
dimensions as they are capable of preserving the underlying structure of the data.  

We employed four algorithms: Multidimensional Scaling (MDS), Isomap, Spectral and 
t-SNE. MDS is a linear method, which is computationally efficient, while the three non-
linear methods should be able to learn more complex relationships between the data 
dimensions. 

MDS creates a low-dimensional representation by minimizing the difference between 
distances of data point pairs in the high-dimensional space and pairwise distances in 
the low-dimensional space. The main contributions to the field of MDS are reviewed in 
Groenen & Borg (2014). 

Isomap (Tenenbaum, de Silva & Langford, 2000) is based on graph theory. It uses 
geodesic distance, which is a path between two points on a surface – rather than along 
a straight line. The Isomap graph is created by connecting neighbouring points and 
computing the geodesic distance between each pair of points. The algorithm uses MDS 
to embed the data into a low-dimensional space preserving the pairwise geodesic 
distances. 

Spectral clustering employs the graph Laplacian to encode the similarity between data 
points. The top eigenvectors of the Laplacian matrix are considered to capture the 
global structure of the data. Spectral embedding is known to be able to capture non-
linear structures and different types of relationships. For details, see Ng, Jordan & 
Weiss (2002). 

Finally, t-SNE (van der Maaten & Hinton, 2008) is a non-linear method that constructs 
a probability distribution over pairs of high-dimensional data points and a similar 
distribution over pairs of low-dimensional points, and it minimizes the difference 
between these two distributions using gradient descent in an iterative fashion. t-SNE is 
considered very effective at preserving the local structure of data at the expense of non-
local structure.  

t-SNE is often used in current Natural Language Processing research for dimension 
reduction. It is the infrequent use of the remaining three methods that led us to test 
the possibility of utilizing them for the task at hand. We suppose that lexicographers 
carrying out the manual evaluation of corpus data, and looking for – otherwise hidden 
– second-order co-occurrence patterns, would benefit from getting access to multiple 
methods to work with. Compare it to the range of tools we can use for detecting 
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potential collocates (and, in general, first-order co-occurrence patterns): t-core, MI-
score, etc. 

We used a free tool, the Orange Data Mining toolkit (Demsar et al., 2013; 
https://orangedatamining.com) for converting the 1024D token embeddings to 2D 
using the above manifold learning algorithms, and also for visualization of the 2D 
outputs as scatterplots. Figures 2, 3, 5, 6, 7, 8 and 9 of this paper were prepared using 
this program. The interactive scatterplots that you have access to while using the 
toolkit also offer zoom functionality and can show or hide sentences as data labels. 
These interactive services, which are not shown in this study, made an important 
contribution to our work. Note, however, that the Orange toolkit is not designed to be 
a “lexicographer’s workbench”. 

3.4 k-means analysis of the clusters using Silhouette scores 

In addition to visual observation of the low-dimensional representations, we also studied 
the original high-dimensional feature space and its 2D representations using k-means 
clustering with additional Silhouette scoring for selecting k.  

K-means clustering is commonly used for grouping data points into clusters 
automatically, based on their similarity to each other. In our case, k centroids are 
initially selected using the k-means++ algorithm (Ostrovsky et al. 2006). Then data 
points are assigned to the closest centroids based on squared Euclidean distances. After 
this assignment step, an update step is carried out, which recalculates the centroids to 
optimize the overall result of the clustering. In our experiment, we allowed for a 
maximum of 5000 iterations over the assignment and update steps. The algorithm is 
sensitive to the initial selection of the centroids (even with the k-means++ initial 
centroids); therefore, 20 reruns were performed, and the run with the lowest within-
cluster error (lowest sum of squares) was kept. 

The selection of the number of the clusters is of special importance in our case. It runs 
parallel to the lexicographic task of sense delineation, which involves drawing 
borderlines between senses, polysemous and homonomous, where polysemous senses 
are related in their meaning by definition. The lexicographical task of splitting and 
lumping senses is known to be challenging, and it is not automatized. In our exploratory 
research, we took OD’s senses as reference points, but we also wanted to know the 
number of clusters that BERT data (raw and 2D-converted) naturally exhibited. 
Therefore, we used Silhouette scoring (Rousseeuw, 1987) of different k values in k-means 
analysis. Silhouette scoring is a measure of how well data points fit into their clusters, 
and it “shows which objects lie well within their cluster, and which ones are merely 
somewhere in between clusters” (ibid.). A higher score indicates better clustering.   

We carried out k-means clustering and calculated the Silhouette scores using the Orange 
Data Mining toolkit. We did not perform added quantitative evaluation of the clusters 
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(using Rand index or V-measure, for instance) in addition to what we have access to 
in the toolkit. Quantitative and qualitative analyses of the resulting plots are provided 
in the next section. 

4. Results 

4.1 Silhouette scores and k-means clusters before and after dimension 

reduction 

Silhouette scores increased for all words after dimension reduction. In most cases, the 
number of clusters (C) was similar before and after dimension reduction and for the 
different visualization methods. However, for risk, the number of the suggested best 
clusters based on the 1024D distributional representations differed considerably from 
that recommended after t-SNE visualization. Figure 1 shows the Silhouette scores for 
different k-means clusters before and after the dimension reduction of the distributional 
representations of risk. 

 

Figure 1: Silhouette scores for 2-15 clusters of risk before and after dimension reduction  

The Silhouette scores for 2-15 clusters based on the 1024 dimensions represent an 
almost linear line on the chart without any significant peaks, at a consistently low value. 
On the contrary, for the t-SNE visualization, there is an increase in the Silhouette score 
for cluster three (0.456) and cluster ten (0.487). The best Silhouette score is associated 
with four clusters based on the Isomap visualization (0.497).  
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Before dimension reduction, the suggested five clusters hardly reflected any patterns. 
Figure 2 visualizes the box plot of the k-means clusters and a sample of the sentences 
in each cluster based on the 1024D representation of risk. Whereas the BNC sentences 
were distributed across the five clusters, the verbal senses of risk clustered together in 
C5. However, the same cluster usually contained heterogeneous sets of the uses of risk. 
C5 included the verbal senses of risk as recorded in the OD sentences and also had 
some of the nominal senses. C1 included only the nominal uses, but several contexts 
were present in the cluster. Medical risk was dominant in C1, but instances of risk in 
statistical and economic contexts appeared towards the end of the cluster. C2 was 
mostly associated with financial risks but also included several health-related risks 
towards the end of the cluster. Sentences in C3 referred to social, environmental, 
economic and medical risks. Sentences in C4 generally referred to risky situations 
without specification (at the top of the cluster) and associated risk with business loss 
and body injuries, among others.   

 

Figure 2: k-means clusters and sample sentences for risk in 1024D space 

The increased Silhouette scores after the dimension reduction were reflected in the 
sentences grouped in each cluster. The suggested ten clusters based on the t-SNE 
visualization showed semantic and syntactic patterns shared among most of the 
sentences in a cluster. First, the verbal senses of risk clustered in C3 with verbal uses 
from the BNC, without nominal senses from OD in the cluster. Second, patterns, such 
as Vbe risk to NP in C1, increase(d)/reduce(d)/ high/ low risk of NP in C2, risk (of)+ing 
and risk+that+clause in C4, started to appear in the clusters frequently. Third, 
compounds such as adj+risk+N were most frequent in C6, whereas collocates such as 
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at risk distinguished the sentences in C7. Fourth, sentences referring to health-related 
risks were primarily placed in C2, whereas business and financial risks dominated C5. 
Figure 3 displays the box plot of the k-means clusters and a sample of the sentences 
with risk after t-SNE visualization. 

 
Figure 3: t-SNE-based k-means clusters and sample sentences for risk 

Unlike the case of risk, the differences in the k-means clusters were minor for mouth. 
Figure 4 shows the Silhouette scores for mouth before and after dimension reduction. 
The Silhouette scores for different k values for the MDS visualization are almost similar, 
and they are considerably low. The best Silhouette score was 0.112 for two clusters 
before dimension reduction. After dimension reduction, the four visualization methods 
suggested three clusters as the best categorization of the five OD senses of mouth (i.e., 
part of the face, a person needing food, of a river, opening or entrance and way of 
speaking). The Silhouette score was best for the Spectral-based clusters (0.577), 
followed by Isomap (0.559), t-SNE (0.481) and MDS (0.375).  
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Figure 4: Silhouette scores for 2-15 k-means clusters for mouth’s example sentences  

The remaining part of this section explores the sentences in the suggested two clusters 
based on the 1024D distributional representations and in the three clusters suggested 
based on the Spectral representation. Figure 5 shows the box plot of the k-means 
clusters for mouth in 1024D and the Silhouette plot of a sample of the sentences in the 
two clusters. As visualized, all OD senses are clustered in a single category, whereas a 
group of BNC sentences form a distinctive cluster. The first cluster contained a diaspora 
of heterogeneous sentences, and the second cluster mostly had sentences in which mouth 
was used in a romantic fiction genre. The literal sense of mouth (part of face), the 
metaphoric sense (opening) and the metonymic sense (way of speaking) appear in the 
same cluster.  
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Figure 5: k-means clusters and sample sentences of mouth before dimension reductions  

After dimension reduction, Spectral visualization showed the best Silhouette scores 
(0.577) for three clusters. The first cluster contained most of the senses of mouth (senses 
2, 3, 4 and 5 in OD and some sentences from sense 1) and most BNC examples. Cluster 
two included the same romance-related uses of mouth, which clustered likewise before 
dimension reduction. However, a new category appeared and separated the uses of 
mouth to make facial expressions from other senses. The newly introduced cluster 
grouped sentences from OD’s sense 1 and BNC examples.    

4.2 Silhouette scores and k-means clusters: two perspectives 

This section compares the best k-means clusters recommended by the Silhouette scoring 
to k-means clusters with k set to the number of dictionary senses. For mouth, the 
recommended clusters after using the four visualization methods were three as 
mentioned in the previous section (C3: making facial expressions, C2: romance-related 
sense, and C1: all other senses). We had five OD dictionary senses for mouth. 
Preselecting the number of clusters to five slightly improved the sub-clusters of the 
sentences, but it did not correspond to the dictionary senses. The three categories of 
mouth in romantic contexts, speaking and making facial expressions stood out again, 
although the literal use of the mouth to speak and the metonymic use as a way of 
speaking overlapped in clusters 1 and 5. The two added clusters contained a diaspora 
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of uses. For instance, cluster 1 included sentences referring to mouth in a medical 
context, as a way of speaking and with reference to eating and drinking. Cluster 5 
grouped the metaphoric uses of mouth as ‘mouth of a river’ or ‘entrance of a cave’ with 
the literal uses of mouth in speaking. Figure 6 shows some of the similarity patterns in 
the sentences based on Spectral visualization of 5 k-means clusters.    

 

Figure 6: Scatter plot of 5 k-means cluster based on Spectral visualization of mouth’s 
sentences (colours indicate different k-means clusters as shown in the chart legend) 

The same applies to full, which has 11 dictionary senses in the current study. However, 
before and after dimension reduction, the best Silhouette scores recommend two or 
three clusters for all the sentences of full. After manually setting the k-means clusters 
to 11, sentences in the clusters did not reflect the dictionary sense delineation. On the 
contrary, the same cluster contained semantically and syntactically dissimilar sentences 
whereas similar sentences overlapped in different clusters. As illustrated in figure 7, 
sentences expressing the literal and metaphoric senses of full as ‘having a lot’ appeared 
in four neighbouring clusters with no explicit patterns separating or joining them. In 
addition, the pattern full + noun which denotes ‘complete’ was frequent in two different 
categories.     
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Figure 7: Spectral-based scatter plot of sentences with full in 11 pre-set k-means clusters 

It is evident from the four case studies, investigated in this research, that pre-setting 
the number of clusters to match dictionary senses will not be helpful. However, 
depending on the automatically calculated highest Silhouette scores may be a better 
reflection of the patterns of use and, accordingly, of word senses, too, in or outside 
lexicographical contexts. 

4.3 Comparing different visualization methods 

Spectral, t-SNE and Isomap showed the best Silhouette scores for all words, unlike 
MDS. Figure 8 shows the four visualizations of the sentences of sound in a 2D space. 
Sentences are sporadically distributed all over the space with MDS, even if they 
instantiate the same sense. On the contrary, the visualized spaces created by Spectral, 
t-SNE and Isomap cluster the sentences closer to each other in major classes based on 
the part of speech. Sense categories are more salient in the t-SNE visualization of the 
examples of sound. First, the different parts of speech formed distinctive clusters all 
over the 2D space. Second, dissimilar senses belonging to the same POS appeared in 
different clusters. For instance, the nominal sense of sound as a passage of water 
appeared in a distinctive cluster other than the phonetics-, music- and television-related 
senses. Also, the verbal senses of sound as ‘give impression’ versus ‘make a sound’ 
appeared in two clusters with considerable distance between them. The similar nominal 
and verbal senses of sound as ‘an impression’ and ‘give impression’ formed close, but 
separate clusters.   

 

557



 
 

 

 

Figure 8: Four 2D visualizations of sound’s example sentences 
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In the initial phase of our experiments, manual parameter tuning was carried out based 
on Silhouette scores and also on the qualitative features of the resulting clusters, 
typically with one or two words. The parameter sets that we settled with for the 
different dimension reduction methods are shown in Table 1. 

Dimension 
reduction 

Settings 

t-SNE perplexity = 20 
distance = Eucledian  
initialization = PCA 
max. iterations = 3000 
learning rate = 200 

MDS initialization = PCA 
max. iterations = 5000 

Isomap neighbours = 20 
Spectral affinity = RBF kernel 

Table 1: Parameter choices for the dimension reduction methods 

We do not argue, however, that a single parameter set will cover all usage scenarios, 
all words of interest, all corpus sizes, etc. Instead, we recommend that the user should 
be given choices and the opportunity to find the most useful methods and settings. The 
t-SNE algorithm, for instance, is notoriously sensitive to the perplexity parameter, 
which balances the effect of local vs. distant neighbours on the resulting low-
dimensional representation. We tried different values, and, in addition, we also explored 
different distance metrics, including Euclidean, Manhattan and Chebychev. Whereas 
the number of recommended clusters remained almost the same for all words, the 
Silhouette scores changed slightly. The best scores were mainly associated with the 
Euclidean metric and perplexity set as 20. Table 2 shows the suggested cluster numbers 
for sound corresponding to several t-SNE settings.     

Distance metric Perplexity Clusters Silhouette Scores 
Euclidean 10 4 0.574 
Euclidean 20 4 0.591 
Euclidean 30 4 0.589 
Manhattan 10 4 0.572 
Manhattan 20 4 0.591 
Manhattan 30 4 0.582 
Chebychev 10 4 0.552 
Chebychev 20 4 0.557 
Chebychev 30 4 0.546 

Table 2: The suggested clusters and Silhouette scores for sound in different t-SNE settings 

Importantly, changing the parameters did not influence the inclusion of the OD 
sentences in the clusters or their overall position in the charts. The adjectival senses 
remained in the same cluster (C1) and appeared together on the t-SNE charts. Also, 
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the verbal and nominal senses of sound as ‘to give an impression’ and ‘the idea or 
impression’ were close to each other on the charts and formed a single cluster (C3). 
The nominal senses of sound with reference to phonetics, as a ‘passage of water’ and 
as ‘audible signals’ formed sub-clusters in cluster two (C2). The fourth cluster contained 
the verbal and nominal senses of sound as ‘something you hear’ and ‘produce a sound’.  

Changing the affinity measures for the Spectral algorithm had a considerable influence 
on the results. For mouth, risk and sound, the nearest neighbour affinity retrieved 
better results than RBF kernel. It was the opposite for the word full, however. Table 3 
depicts the suggested clusters for all words using RBF kernel and nearest neighbour in 
the Spectral algorithm.  

Word Affinity Clusters Silhouette score 
Full RBF kernel 2 0.838 
Full Nearest neighbour 3 0.601 
Mouth RBF kernel 3 0.577 
Mouth Nearest neighbour 3 0.775 
Risk RBF kernel 3 0.418 
Risk Nearest neighbour 4 0.517 
Sound RBF kernel 4 0.529 
Sound Nearest neighbour 3 0.730 

Table 3: The suggested clusters and Silhouette scores based on Spectral’s affinity measures 

Let us point out, however, that while the Silhouette scores increased with the nearest 
neighbour affinity, the homogeneity of the classes decreased in most cases. Figure 9 
shows the distribution of the sentences with mouth over the Spectral space using the 
nearest neighbour measure. The cohesion of the clusters is evident, and the distance 
between some uses (e.g. ‘using the mouth to make facial expressions’ and ‘reference to 
the mouth in face description’) is noticeable. However, the overlap between the example 
sentences shows the heterogeneity of the sentences that form cohesive clusters. The 
figurative use of mouth as ‘an opening of a hole or cave’, the collocation mouth open 
with reference to surprise and mouth in relation to the medical field overlapped in the 
same cluster. Also, a mixture of literal and metaphoric uses of mouth and open were 
merged in the same cluster. 
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Figure 9: Spectral visualization using nearest neighbour measure for mouth sentences 
 

The use of RBF kernel decreased the Silhouette score of the clusters, but the 
homogeneity of the clusters and sub-clusters within improved. Figure 6 has already 
illustrated the distribution of mouth sentences using RBF kernel in the Spectral 
algorithm. It showed the separation between the metaphoric, metonymic and literal 
senses of mouth in the clusters and the closeness between face-related senses in clusters 
2 and 4 and speaking-related senses in clusters 1 and 5. 

Regardless of the parameters, the cohesion of the clusters increased after dimension 
reduction. Figure 10 summarizes the Silhouette scores of the k-means before and after 
using different 2D visualization methods for the four words examined in this study. It 
is evident that the cohesion of clusters considerably increased after the dimension 
reduction for all words. Also, the suggested best number of clusters differed across 
words and visualization methods. The highest Silhouette score was 0.838 for Spectral 
visualization of the sentences of full. For the same word, the Silhouette score for the 
MDS visualization was the lowest (0.392), although the two visualization methods 
recommended the same number of clusters. The visualization created by Spectral 
clustered the sentences closer to each other in two major classes. Most sentences 
following the pattern full+noun formed a cluster different from sentences following the 
pattern noun+Vbe+full of+noun. Some sentences were sporadically distributed over the 
two clusters. However, they also showed some patterns, such as the collocations full up 
and full to and the pattern noun+Vbe+full. Although the original senses of full in OD 
are 12, the Spectral visualization did not show sensitivity to the semantic differences 
between the sentences corresponding to the 12 senses. For instance, the metaphoric 
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senses of full (e.g., full of pain or joy) and the literal ones (e.g., full of books, clothes) 
are clustered in one category. 

 

Figure 10: The highest Silhouette scores for the four studied words before and after 
dimension reduction 

 

Several theoretical and computational approaches have been implemented in the 
literature to cluster dictionary senses into new categories. The clusters differed 
qualitatively and quantitatively according to the adopted approach. Whereas some 
studies depended on extensive qualitative analysis of dictionary data to improve the 
representation of senses for human users (e.g., Geeraerts, 2001; Lewandowska-
Tomaszczyk, 2007; Molina, 2008), others aimed at improving the automatic 
performance of NLP tasks (for instance, Buitelaar, 1998, 2010; Ide & Wilks, 2007). 
Therefore, the number and members of the suggested clusters differed considerably. 

Theory-based studies in lexicography highlighted the necessity of finding meaning 
relations among word senses (e.g., metaphoric and metonymic extensions of the literal 
senses), identifying the core literal meaning or meanings from which other meanings 
descend and organize word senses in homogenous categories that have always differed 
from those in the dictionaries. Although our study depended on distributional, rather 
than cognitive linguistic, approaches, the separation between the metaphoric, 
metonymic and literal senses of words such as mouth and sound was done automatically 
based on the distributional features of the word uses. Also, the uses of words with 
relevance to specific semantic fields (e.g., risk in financial domains, mouth to make 
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facial expressions, full with relevance to emotions) stood out in the automatically 
generated clusters.    

The automatically generated clusters lumped several dictionary senses in the same 
cluster. It was most evident in the case of full, which had 11 fine-granular dictionary 
senses in our study. Yet, the different algorithms suggested 2 or 3 clusters only. 
Although the sub-clusters separated the metaphoric and the literal uses which were 
lumped in the dictionary, they also lumped the different levels of fullness which were 
split in the dictionary.  

In almost all cases, the four algorithms reduced the number of OD’s sense categories. 
Some dictionary distinctions were preserved within the sub-clusters (e.g., sound of 
music vs. sound of TV and radio), but others were lost (e.g. the four verbal senses of 
risk). Reducing the number of dictionary senses has been proposed in some NLP 
initiatives that prioritize the improvement of the quantitative indicators (the accuracy 
of word sense disambiguation). They, however, sometimes opt for solutions that are 
incompatible with the lexicographic practice, such as maintaining only meaning 
distinctions at the highest ontological levels, as discussed by Ide and Wilks (2007).  

Our study aimed at combining extrinsic assessment of the clusters with qualitative 
analysis of their homogeneity so that the experiments can be relevant to both 
lexicographers and NLP scholars interested in sense-related tasks.  

5. Conclusion 

This study explored the possible use of 2D visualizations of contextualized word 
embeddings in lexicographic context, specifically sense delineation and example 
selection. It presented case studies for lexicographers to test the applicability of 
employing the suggested visualization methods in lexicographic investigations. 
Although the distributionally-created clusters did not correspond to the number of 
dictionary senses, they showed BERT’s sensitivity to semantic and syntactic similarities 
between word uses. 

Before dimension reduction, Silhouette scores of the k-means clusters were low, and so 
was the qualitative cohesion between the sentences in the cluster. Accordingly, 
providing lexicographers with distributionally-recommended clusters based on the 
original high-dimensional word embeddings are not helpful.  

Visualizing BERT representations in 2-dimensional spaces using Spectral, t-SNE, 
Isomap and MDS algorithms showed quantitative and qualitative improvements that 
can be beneficial to lexicographers. For instance, not only the Silhouette scores of the 
k-means clusters increased, but also semantic and syntactic similarities appeared in the 
clusters and the manually identified sub-clusters within them.  

Although the scope of the present study is limited to four words, to four dimension-
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reduction methods and a single contextualized word embedding type (albeit a powerful 
one), we find these results novel and useful. The visualization of contextualized word 
embeddings of neologisms can help lexicographers identify their collocational patterns, 
POS usages and semantic preferences. Such patterns consistently appeared in the four 
case studies. Also, these visualizations can be helpful in enriching dictionary entries 
with additional, corpus-based examples; the closest BNC sentences to the OD examples 
mostly reflected very similar semantic and syntactic patterns in the four cases. In our 
charts, we also saw thematically-motivated clusters of BNC sentences that were ignored 
during exemplification of the OD headword (consider the uses of the word mouth in 
romantic literature), a situation which – when a representative corpus is used for the 
analysis – indicates a hiatus in the entry, which is not readily observable in 
concordances. 

By taking advantage of the power of contextualized word embeddings and dimension 
reduction algorithms, we should be able to provide methods for lexicographers to 
explore and better understand the complex relationships between words and their 
meaning. These methods – enabled by current advances in Natural Language 
Processing – do not replace any subtask of the human “art and craft” of dictionary 
compilation, but they contribute to computer-assisted lexicography. 
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