
Corpus-based extraction of
good example sentences

with a high range of variation
Alexander Geyken, Ulf Hamster, Lothar Lemnitzer, Gregor Middell, Ji-Ung Lee**, Iryna Gurevych**

Berlin-Brandenburgische Akademie der Wissenschaften
**Technische Universität Darmstadt

Outline

1. Introduction
2. Example variation

● Motivation
● Problem Statement
● Adopted Solution

3. Train a scoring model
● Interactive Learning approach
● Best-Worst Scaling

4. Demo
● Demo: train a scoring model
● Demo: example variation

1. Introduction

Background

DWDS is a one-stop dictionary for contemporary German
(spelling, grammar, etym, definition+ corpus examples,
thesaurus)

DWDS consists to a large extent of legacy resources that
are outdated or do not contain corpus examples at all.

150.000+ entries (WDG, Duden-99) have to be revised,
including with corpus examples.

Corpus-base of dwds is very large (50b tokens:
www.dwds.de/r)

● WDG: Wörterbuch der dt. Gegenwartssprache (1961-1977)
● Duden-99: Großes Wörterbuch der deutschen Sprache (1999)

www.dwds.de

engl: ‘hurdle’ or met. ‘obstacle’

http://www.dwds.de/r

Motivation

Starting point GDEX: “Automatically finding good dictionary examples in a corpus”.
(Kilgarriff et al. 2008), Gute-Belege-Extraktor (Didakowski et al. 2012, adaptation for
German)

Additional ideas to GDEX

● look vor variation of example sentences (in order to cover the different
meanings)

● In addition to GDEX experiment with individualized model training by Active
Learning approach

The implementation of both aspects dealt with in EVIDENCE project, joint initiative
between BBAW and TU-Darmstadt

1. Example variation

Problem analysis

Observations

● Search results contain (near) duplicates
● … refer to the meaning, event, linguistic concept (semantics)
● … have similar sentence grammar (syntax)
● … come from the same sources (author, book editions, time spans)

Causes

● Search results with an equally high score can refer to the same set of evaluation
criteria.

● Scoring models evaluate single sentences independently of each other.

Example: Duplicates for the lemma “Regierungsauftrag”

Exact duplicates in multiple
syndicated newspaper pages

Preferring different sources
would not be sufficient.

Other examples:
- Clickbait Repostings,
- Errata in web articles,
- Book reprints

Korpustreffer für »Regierungsauftrag«, aus dem Korpus DWDS-Zeitungskorpus (ab 1945) des
Digitalen Wörterbuchs der deutschen Sprache, Zeitraum 2021-2022.

Solution 1/4 - The MECE-Principle

MECE = "mutually exclusive and collectively exhaustive" (set theory)

“mutually exclusive” or disjunct

● The set of all selected sentence examples should have no or minimal
intersections in terms of similarity in meaning (and grammar, and other criteria).

“collectively exhaustive”

● The union of all selected sentences should (ideally) cover the entire range of
meanings (and grammars, and other criteria).

To sort the search results, determine weights wi
by maximizing the goodness score gi of a sentence
and minimizing the aggregated similarity matrix Qij
 between all sentence examples.

Solution 2/4
Quadratic Optimization as Search Filter

λ

β
1

β
2

β
3

β
4

penalize semantic similar sentences

penalize syntactic similar sentences

penalize similar fingerprint

penalize similar sources

prefer goodness score over variation

e.g., Dij
(semantic) could be the

cosine-similarities based on
SBert representations

Implementation details:
Reverse Automatic Differentiation as approximation for
quadratic optimization problems

Why? Old SQP-Solver can process only few examples. Big-O complexity!

PyTorch and Tensorflow are “Reverse Automatic Differentiation” libraries.

We can reformulate an optimization problem as loss function.

The optimization constraints become regulariztion penalties.

Quadratic Optimization with Tensorflow in Python
https://github.com/satzbeleg/keras-quadopt/blob/main/keras_quadopt/problem.py

Refactored Code in TFJS
https://github.com/satzbeleg/evidence-app/blob/main/src/components/variation/quadopt.js

tl;dr
=> Old slow numerical optimization problems

can be reformulated and solved with faster modern software

https://github.com/satzbeleg/keras-quadopt/blob/9aa271f395cb56f1d1008407f57a656b183d356a/keras_quadopt/problem.py
https://github.com/satzbeleg/evidence-app/blob/61039f8e65592313b1736eecf606fe9335d5988a/src/components/variation/quadopt.js

Solution 3/4 - Similarity Metrics

We are using off-the-shelf algorithms, e.g., SBert (LM), Datasketch (MinHash)

What does semantic similarity mean here?

● for each sentence example, the representation vector is computed with SBert (Contextual Sentence
Embeddings),

● and the cosine-similarity Dij for each pair of sentence examples i and j is computed.

How is syntactic similarity determined?

● for each sentence example, the dependency grammar tree is computed with trankit.
● the dependency tree is decomposed into partial trees (treesimi pypi package).
● partial trees are serialized for MinHash (datasketch pypi package).
● the jaccard similarity Dij for each pair of MinHashes i and j is computed.

And how are (near) duplicates and similar citations detected?

● decompose the texts into shingles (kshingle pypi package).
● use shingles to generate a MinHash, and compute jaccard similarities.

Solution 4/4 - Goodness Scores

How is the goodness score gi of the i-th sentence example computed?

● In our case, we implemented an Interactive Learning model
○ Users rank with Best-Worst Scaling UI to produce training scores.
○ An individualized TensorFlowJS-Modell is trained in the App/Browser directly.
○ The local TFJS-model predicts gi

● In general, any other Scoring-Modell can be deployed variation search filter
○ For example, precompute scores gi with GDEX (Kilgarriff et al. 2008), and retrieve from backend.

Train a scoring model
with Interactive Learning

Interactive Learning approach

Synonym [ml.]: Human-in-the-loop AI, Cooperative Learning, Interactive Learning

Type of ML: “Semi-Supervised Learning” with “Incomplete Supervision” (Zhou, 2018)

1. User annotates (few!) examples

2. (Warm-Start) Model retraining (few! epochs)

3. Model predicts scores for step 4.

4. Sampling of new examples for step 1.

Source: Z.-H. Zhou, “A brief introduction to weakly supervised learning,” National Science Review, vol. 5, no. 1, pp. 44–53, Jan. 2018, doi: 10.1093/nsr/nwx106

Diagram: https://images.deepai.org/glossary-terms/46a6b355896c490cae75d2a0a15d4f65/active-learning.jpg

https://images.deepai.org/glossary-terms/46a6b355896c490cae75d2a0a15d4f65/active-learning.jpg

Extract pairs comparisons with Best-Worst-Scaling (BWS)

2 clicks (worst, best)
result in

5 pair comparisons
(1x direct, 4x implicit)

Nij is a big & growing,
sparse matrix

Derive training scores si
from Nij

Why?
Cold Start problem
Generate training data fast

Demo how to count frequencies: https://github.com/satzbeleg/bwsample/blob/main/docs/count.ipynb
Algorithms to derive scores from paired comparisons: https://doi.org/10.31219/osf.io/ev7fw

https://github.com/satzbeleg/bwsample/blob/main/docs/count.ipynb
https://doi.org/10.31219/osf.io/ev7fw

Demo

Demo: Train a scoring model

Corpus: approx 1 Mrd. tokens (SZ, Bild, NOZ, political speeches)

1. Login: https://evidence.bbaw.de/#/auth/login
2. Go to “Settings”: https://evidence.bbaw.de/#/settings

a. Set “Sampling Sentences from Pool” to “semantic-similar” (=> reduce pool size!)
b. Set “Maximum Pool Size” to 100 - 150
c. Set “Re-Train patiences” to 5

3. Go to “Ranking”: https://evidence.bbaw.de/#/bestworst4
4. Search for a lemma
5. Start ranking BWS sets
6. Observe “Training Loss” (lower-right corner of the screen with red/yell/green)
7. Click on “Rankings” button (upper-left corner of the screen)

https://evidence.bbaw.de/#/auth/login
https://evidence.bbaw.de/#/settings
https://evidence.bbaw.de/#/bestworst4

Demo: Search for varied examples

1. Go to “Variation”: https://evidence.bbaw.de/#/variation2
2. Search for a lemma
3. Case 1: Disable similarity penalties (Sort only by Goodness Score)
4. Case 2: Enable “semantic” penalty

https://evidence.bbaw.de/#/variation2

Quellen - Literatur

[1] Kilgarriff, A., Husák, M., McAdam, K., Rundell, M., Rychlý, P., 2008. GDEX:
Automatically Finding Good Dictionary Examples in a Corpus. Presented at the
Proceedings of the 13th EURALEX International Congress, pp. 425–432.

[2] Didakowski, J., Lemnitzer, L., Geyken, A., 2012. Automatic example sentence
extraction for a contemporary German dictionary, in: Proceedings of the 15th
EURALEX International Congress. Presented at the EURALEX 2012, Department of
Linguistics and Scandinavian Studies, University of Oslo, Oslo,Norway, pp. 343–349.

Quellen - Software

Software repositories for the EVIDENCE project:

https://github.com/satzbeleg

https://github.com/satzbeleg

Appendix

Implementation details:
Precompute CL/NLP features & Keep the TFJS-Model simple

Feature Engineering: https://github.com/satzbeleg/evidence-features/tree/main#features-overview
TFJS Model: https://github.com/satzbeleg/evidence-app/blob/main/src/components/bestworst/interactivity.js#L930
How to compress SBert features by 94 to 99%: https://arxiv.org/abs/2304.02481

f(x*W)
h

dim=32
x

dim=1181

x : input signals
W : trainable model weights
f : swish activation
dropout rate 0.5

y
dim=1

g(h*V)

h : hidden states
V : trainable model weights
g : sigmoid activation [0, 1]
y : model score

concat

REST
API

Front-End
train TFJS-Modell in Web-App

Back-End
precompute CL/NLP features
and cached in Cassandra-DB

…

Hashed SBert vectors (semantic)
PoS-tag distributions (morphosyn.)

Genus, Numerus, Tempus, … (morphosyn)
node distances in dependency tree (syntax)

IPA-based consonant clusters (phonetics)
char-, bigram-, emoji-, word frequencies

proba of detected language & dialect
…

The small TFJS-model doesn’t need to learn about
language properties anymore because it should be
encoded in the (pretrained) CL/NLP features.

XAI:
(1) Estimate Pr.Distr. of CL/NLP features,
(2) Run MC-Simulation on each group of CL/NLP feats.,
(3) Measure the sensitivity on model score.

https://github.com/satzbeleg/evidence-features/tree/main#features-overview
https://github.com/satzbeleg/evidence-app/blob/61039f8e65592313b1736eecf606fe9335d5988a/src/components/bestworst/interactivity.js#L930
https://arxiv.org/abs/2304.02481

Implementation Details
● processes are triggered by events

(e.g., observed counter exceeds threshold)
● processes work on data,

and run in parallel in the background
● data is stored in “reactive” variables (JS)

which show the changes to the UI when
background processes are done

● syncing local reactive variables with
backed-server happens in the background
too (e.g., offline-first principle if the internet
connection is interrupted)

Here is
our user
interface

Demo (offline)

www.dwds.de/wb/käse

Example Käse (en: cheese)

1. ‘food’
2. [pej. ‘nonsense’

Käse (en: cheese) 1/2 - sorted by goodness (λ=100%)

Top-Scorers:
cheese as food

Käse (en: cheese) 1/2 - sorted by goodness (λ=100%)

Top-Scorers:
cheese as food

Käse (cheese) 2/2 - different semantics (λ=0%, β
1
=100%)

Schweizer Köse in MWA

Käse (‘food’)

Käse (‘nonsense‘)

digitalisieren (digitize) 1/2 - goodness vs. semantics & grammar (λ=25%,
β

1
=50%, β

2
=50%)

Too many
examples from

the same source
(Die ZEIT)

digitalisieren 2/2 - variation of sources (λ=25%, β
1
=50%, β

2
=50%, β

4
=100%)

Sources (ZEIT, C’t,
konkret, ZEIT, Bild)

Blau (en: blue) 1/2 - semantics (λ=0%, β
1
=100%)

‘color’

‘Black eye’
(discolored flesh

around the eye
resulting from a

blow)

blau 2/2 - more grammar variation (λ=0%, β
1
=50%, β

2
=50%)

previous hits

new hits

