
A Pipeline for Automated Dictionary Creation with

Optional Human Intervention

Thomas Widmann
No Institute Given

Abstract

This paper presents a modular pipeline for automated dictionary creation using large
language models (LLMs). It addresses the well-known limitations of prompting systems
such as ChatGPT to produce entire entries in a single step – outputs that may read
fluently but often lack structural consistency, transparency, originality and verifiability.
The proposed system overcomes these weaknesses by decomposing the lexicographic process
into a sequence of narrowly constrained, XML-validated stages, each guided by custom-
crafted prompts and Document Type Definitions (DTDs). Rather than asking an LLM
to “write a dictionary entry,” the system treats it as a disciplined assistant performing a
defined subtask under strict supervision.

At each stage – ranging from extracting and shortening corpus examples to grouping,
defining, translating and formatting – the output is verified against an XML grammar and
preserved for audit. This structure enforces reproducibility and allows human intervention
at any point, combining the speed and adaptability of machine generation with the oversight
and accountability of traditional lexicography. The process is entirely corpus-grounded:
every example can be traced to a verifiable source, and every decision in the pipeline
is documented. Errors can be corrected where they occur rather than through repeated
prompting, and edited intermediate files can be reintegrated seamlessly into the workflow.

Technically, the pipeline is implemented in Python and designed to integrate easily with
standard dictionary environments such as IDM’s DPS system. It is language-agnostic
and domain-independent: prompt files and DTDs can be adapted to any language pair,
dictionary type or corpus source. The modular architecture also enables the insertion of
new stages – for example, automatic tagging of usage labels, collocations or etymological
notes – without altering the underlying structure. The system produces both machine-
readable XML output and human-friendly Markdown files for editorial review, ensuring
compatibility with established lexicographic and publishing workflows.

Two sample entries for the Danish adjective nørdet demonstrate that the pipeline achieves
consistent formatting, transparent sourcing and idiomatic translations while avoiding
plagiarism and hallucination. Evaluation suggests that each complete run (typically five
stages) produces a usable draft entry at minimal cost and within seconds. The approach
therefore provides a sustainable framework for dictionary production, especially for under-
resourced languages or specialised terminologies where editorial time and funding are
limited.

By embedding formal validation and corpus traceability into every step, the system offers a
practical model for responsible integration of LLMs into lexicography. It shifts the human
role from mechanical compilation to high-level editorial judgement, enabling lexicographers
to supervise, refine and extend AI-generated content with full transparency. Released as
open source under the MIT Licence, the pipeline invites adaptation, experimentation and
community collaboration.

33

Keywords: dictionary creation; large language models; lexicographic automation; XML
validation

1. Introduction

Automatic dictionary creation is not a new ambition. Lexicographers have long explored
ways to streamline the compilation process, and tools such as Sketch Engine have introduced
varying degrees of automation into lexicographic workflows.

The recent emergence of large language models (LLMs) such as ChatGPT has prompted
renewed excitement, owing to their fluency, contextual awareness and surface-level coher-
ence, at least since the recorded talk by de Schryver & Joffe (2023) was released. However,
asking an LLM to generate a dictionary entry directly typically results in content that is
inconsistent, unverifiable and, in some cases, plagiarised.

Our project builds on the insight that LLMs perform best when assigned narrowly defined,
constrained tasks. Rather than treating ChatGPT as a fully fledged lexicographer, we treat
it as a trainee working under strict supervision. It completes each small step according to
explicit instructions, with all output validated against a formal schema and traceable to
corpus data.

This paper introduces a fully implemented system for GPT-assisted dictionary creation. It
is designed to produce entries that are internally consistent, corpus-grounded, structurally
validated and editable using standard dictionary tools. We present the architecture,
motivation and an early evaluation of the system, with all code and prompts released as
open source (Widmann, 2025a).

2. Motivation

As highlighted by several authors, including Nichols (2023), Rundell (2023) and Widmann
(2025b), prompting a large language model to produce a dictionary entry in a single step
introduces several well-documented problems:

1. Consistency: The generated entries often lack a coherent structure, making them
difficult to compare or integrate into larger lexicographic projects.

2. Transparency: There is no clear link between examples and real-world usage. They
may appear plausible but are not traceable to verifiable sources such as corpora.

3. Hallucination: Some content is simply invented – for instance, inaccurate tran-
scriptions, fabricated senses or fictional usage patterns – with no systematic way to
detect or correct the errors.

4. Originality: Many generated definitions, particularly in English, appear to replicate
existing dictionary entries, presumably drawn from the model’s training data (cf.
Nichols (2023)).

5. Editability: Output is rarely structured for direct import into dictionary-editing
environments, limiting its practical usefulness.

The present system addresses each of these problems by enforcing structure, sourcing
examples from corpora, validating against formal grammars and preserving every interme-
diate step for inspection and revision. This is, of course, an area attracting considerable

34

interest, but we believe the solution proposed here is novel – not LLM integration per
se, which is already implemented in TLex and other tools, but the structured, phased
approach adopted here.

These challenges are not unique to lexicography. Similar limitations have been observed
in other fields where LLMs are asked to generate structured, verifiable content without
guidance. What distinguishes the lexicographic case is the availability of large, curated
corpora and formal entry templates, which make it particularly amenable to a stepwise,
schema-driven solution. The approach outlined in this paper builds directly on these
strengths.

3. Producing a Dictionary Entry Automatically

3.1 Preparing a Corpus Concordance

The system operates on keyword-in-context (KWIC) concordances provided as plain-text
files. Each concordance entry should be separated by a double line break, and each line
should represent an authentic usage example of the headword or search term. The system
itself is source-agnostic: any tool capable of producing suitably formatted KWIC lines can
serve as a source.

A small utility script, kwic.py, included in the GitHub repository, illustrates the basic
idea. It scans a plain-text corpus and returns matches with a configurable amount of
context on either side. This script is intended solely as an example and is not suitable for
production use.1

The examples presented in this article were extracted from the Danish Language Council’s
internal 7-billion-word corpus, which primarily consists of Danish newspaper text from
the past fifteen years. Users are encouraged to substitute their own corpus infrastructure
and sources according to language, domain or project-specific requirements.

The system supports arbitrary corpora,2 preprocessing methods and language pairs. As long
as a KWIC file in the expected format is provided, the workflow remains fully compatible.
However, the corresponding .mdx prompt file must be tailored to match the language and
content of the input file.

3.2 The Prompt File

Each stage of the pipeline is controlled by a dedicated prompt, defined in a structured
text file with the .mdx extension. These files consist of a sequence of named blocks, each
comprising:

• a #name identifier (e.g. extract_examples),
• a #prompt section containing detailed instructions to the language model,

1 If the reader does not have access to a corpus, they may use WikiExtractor (Attardi, 2015) to extract
plain text from a Wikipedia dump. Further information can be found in the README.md file in the
GitHub repository.

2 Of course, the quality of the corpus feeds directly into the resulting dictionary entry.

35

• a #example illustrating the expected structure and content of the output in XML
format,

• a #DTD defining the XML grammar that the output must conform to.

Different prompt files may be created for different language pairs, domains or dictionary
types. In this document, we refer solely to danish-english.mdx (included in the GitHub
repository). This file was constructed manually through trial and error, and can undoubtedly
be improved. An .mdx file designed for a definition dictionary or for a thesaurus would
consist of very different stages and prompts.

The prompts should also be adapted to the specific LLM in use. We currently employ the
GPT-4o model, which yields good results, but different models may vary in how closely
they follow instructions and how readily they improvise.

Each prompt stage in the system is defined as a block within a single .mdx file. Each block
includes an instruction, a minimal XML example and a DTD specification. This modular
setup ensures that the LLM is guided by clearly defined expectations at every stage.

Prompt stages can be added, modified or reordered to support different languages, transla-
tion directions or dictionary types.

3.3 Running and Rerunning the Program

The prompt chaining replicates traditional lexicographic logic (shorten → group → define
→ translate → label), offering a bridge between human and machine workflows.

At runtime, the lexicographer.py program reads the appropriate .mdx file and submits
the prompts sequentially – together with the latest intermediate XML file – to the OpenAI
API (by default using the GPT-4o model, though this can easily be changed). The
returned output is validated against the DTD using Python’s lxml library. If validation
fails, the prompt is automatically reissued until well-formed and valid XML is produced.
It is therefore essential that the DTD matches both the prompt and the XML example;
otherwise, the validation step may continue failing indefinitely.3

Intermediate XML files are preserved and may be manually edited if required. The process
can be resumed from any stage, ensuring that output is structured, auditable and readily
adapted. This flexibility makes it possible to fix errors at the point where they occur – for
instance, when a corpus example is shortened incorrectly or a translation is unsatisfactory
– rather than rerunning the entire process and simply hoping for a better result. If the
LLM struggles with a particular example, it may well encounter the same difficulty on
subsequent runs. Without the ability to intervene mid-pipeline, users could be forced to
repeat the full process multiple times. Direct correction is both more efficient and more
predictable.

3.3.1 Example Prompt: Step 1 (extract_examples)

The following is a sample prompt used to extract examples from a corpus concordance:
3 The lexicographer.py program does not retry indefinitely; by default, it attempts five times before

giving up.

36

Here's a corpus concordance for the Danish lemma '$hw' ($pos). Please
skip any lines where the part of speech is something other than '$pos',
or where the word is part of a name or title. Then shorten each
remaining line to a single short sentence or sentence fragment in Danish
that includes the headword, making as few changes as possible.

The result must be a truthful representation of the original quotation,
meaningful in its own right, and useful as a dictionary example
(ideally 8–12 words long). To reiterate: all included lines must involve
the lemma '$hw' used as a '$pos'.

Here is a minimal example of the kind of XML I'd like you to produce:

<entry>
<hw>ko</hw>
<trgrp>

<orig>træer og et rigtigt bondehegn. Faktisk manglede der kun en ko
bag hegnet for at skabe en perfekt filmkulisse. Nogle vil</orig>

<ex>Faktisk manglede der kun en ko bag hegnet.</ex>
</trgrp>

</entry>

The XML must adhere to this DTD:

<!ELEMENT entry (hw,trgrp+)>
<!ELEMENT hw (#PCDATA)>
<!ELEMENT trgrp (orig, ex)>
<!ELEMENT orig (#PCDATA)>
<!ELEMENT ex (#PCDATA)>

Each stage produces output that becomes the input to the next. Validation is enforced
using lxml.etree, and any failed stages are reattempted automatically.

3.4 Subsequent Stages of the Pipeline

While the first stage (extract_examples) focuses on extracting concise, corpus-based
examples, the system continues through several subsequent stages, each defined as a
named block in the .mdx file. The following summarises the remaining default stages in
the Danish–English pipeline, though users are free to modify or replace them as required.

group_examples In this stage, the extracted examples are semantically grouped. The
language model is instructed to cluster the examples by sense, assign each group
a short Danish definition,4 and place one to three representative examples under
each category. The output introduces the structural elements <gramcat> (with a
part-of-speech attribute), <cat> (with a sense number) and <def>.

4 The definition is generated by the LLM solely on the basis of the grouped examples. If the pipeline were
intended for monolingual dictionary production rather than bilingual output, it could easily include an
additional stage focusing on refining or verifying sense definitions.

37

add_tran Here, the model adds idiomatic translations for each example. For every <ex>
(example) line, it appends a corresponding <trex> (translated example) line in
British English. The prompt explicitly requests natural, native-like phrasing, even at
the cost of literalness. These translations remain aligned with the original examples
and are grouped under the same <trgrp>.

extract_tran_lemma This stage identifies the English equivalent of the headword in each
translated example. The model is asked to extract the relevant translation (e.g. cow
for ko) and insert it as a new <tran> element inside each <trgrp>, placed before
the original and translated examples. The dictionary form (e.g. the infinitive for
verbs) is required, ensuring consistency with downstream dictionary structures.

reorder_dict Finally, the system restructures the entry so that all unique headword
translations (<tran>) appear not only within their respective <trgrp> elements
but also immediately after each sense definition (<def>). This duplication supports
lexicographic tools that expect grouped translations per sense block, while preserving
local context within the example groups.

Each of these stages produces valid XML according to its stage-specific DTD, and each
step can be independently rerun, corrected or skipped. The modular design allows new
stages – such as collocation extraction, etymology insertion or usage label tagging – to be
added by defining additional prompt blocks in the .mdx file.

The .mdx prompt files may therefore evolve organically over time, adapting to new
dictionary features or changing editorial priorities.

3.4.1 Manual Correction and Resuming the System

As an example, we have generated a dictionary entry for the Danish adjective nørdet.5
In doing so, it was observed that several examples involving the verb nørde had been
incorrectly included. If such issues occur systematically, the relevant prompt block in the
.mdx file should be reviewed and refined. However, if the problem appears to be a one-off,
an alternative is to manually edit the intermediate file – for example, nørdet01_01.xml,
the output from stage one – and remove any erroneous examples, such as the following:

<trgrp>
<orig>I stedet for at gå til golf eller sejlads
nørder jeg igennem med bryggeri.</orig>
<ex>I stedet for golf nørder jeg igennem med bryggeri.</ex>
</trgrp>

After such corrections, the system can be resumed from this point using:

python lexicographer.py danish-english.mdx nørdet adjective \
output/nørdet01_01.xml

5 The past participle of the verb nørde, which is derived from the noun nørd, a borrowing from English
nerd.

38

This approach allows for targeted adjustments without re-running the entire pipeline.
Once the edited file is in place, the script continues with the next stage, incorporating the
correction while retaining previous results. This facility allows for targeted adjustments
without re-running the entire pipeline, enabling a semi-automatic workflow in which human
editors can resolve specific anomalies without compromising automation.

3.5 Final Output

The final stage of the pipeline produces two parallel outputs: a structured XML file suitable
for further processing or integration into dictionary databases, and a human-readable
Markdown version designed for inspection and proofreading.6

The XML file contains a complete, machine-parseable entry for the given headword,
including all example groups, definitions, translations, collocations and other dictionary-
relevant components generated across the pipeline stages. Because each stage enforces
XML validation against a Document Type Definition (DTD), the output is guaranteed to
conform to a predictable and well-defined structure.

All files are written to the output directory. The naming scheme reflects the headword
and run number, followed by either a stage number or the word final, depending on the
file. For example, processing the adjective nørdet on run number 01 produces:

output/nørdet01_01.xml
output/nørdet01_02.xml
output/nørdet01_03.xml
output/nørdet01_04.xml
output/nørdet01_05.xml
output/nørdet01_final.xml
output/nørdet01_final.md

The run number allows the user to generate the same entry multiple times without
overwriting previous results. The stage number indicates which step in the pipeline the
file represents.

To view the Markdown file, one may, for instance, use Pandoc to produce a Word document:

pandoc -o output/nørdet.docx output/nørdet_final.md

These files may then be imported into a larger dictionary compilation workflow, used as
input to further automation pipelines or reviewed by human editors. Since each intermediate
stage is preserved and traceable, the resulting entry is not only reproducible but also open
to revision and audit.

Additional output formats or editorial front-ends could easily be supported by modifying
the final XSLT step.

6 The Markdown version is created by a simple XSLT script; this can easily be modified to change the
formatting or to produce other types of output, such as HTML.

39

3.6 Choice of Architecture

The pipeline was designed around XML and DTDs because this is the native format
of IDM’s DPS system used by the Danish Language Council, and integrating the LLM
pipeline into this environment was the most practical solution. Nothing in the architecture,
however, precludes adaptation to other infrastructures: the same modular stages could, in
principle, just as easily write to a relational or graph-based database instead of XML files.
We would welcome patches to the source code that make the system more general and
flexible.

4. Evaluation

To illustrate the system’s output, we present a sample entry generated for the Danish
adjective nørdet.

nørdet adjective

6. (meget interesseret i specifikke emner eller detaljer) geek, nerd7
• Er man nørdet udi romantikkens klassikere, kan man høre et lille
nik. If you’re a bit of a romantic literature geek like me, you’ll catch a nod.

• Jeg har ellers været ret nørdet med den slags. I’ve tended to be quite
the nerd about that sort of thing.

• Hun er både ambitiøs og nørdet. She’s both ambitious and a bit of a
nerd.

7. (teknisk eller specialiseret på en særlig fokuseret måde) geeky, nerdy
• Flere og flere får noget så nørdet som en sous vide. More and more

people are getting something as geeky as a sous vide.
• Det er egentligt ret nørdet, men også ret fedt. It’s actually quite

nerdy, but also pretty cool.
• Det er lidt nørdet og følelsesmæssigt, forklarer hun. It’s a bit geeky

and emotional, she explains.
8. (person kan opfattes som genert eller socialt akavet) nerdy

• Troels Lund Poulsen kan virke lidt nørdet. Troels Lund Poulsen can
come off as a bit nerdy.

• Mit yndlingscitat handler om en nørdet hukommelsescelle. My
favourite quote is about a nerdy memory cell.

For comparison, here is the result of a second run on the same input:

nørdet adjective

9. (overdrevet interesseret i specifikke emner) buff, geeky, nerdy
• Er man nørdet udi romantikkens klassikere, kan man høre et lille
nik. If you’re a bit of a romantic literature buff, you might spot a nod.

7 The system has chosen to translate the adjective using nouns here, matching the idiomatic phrasing of
the examples. The prompts could be adjusted to prevent this, or an editorial note could be added to
explain the rationale.

40

• Jeg har ellers været ret nørdet med den slags. I’ve been quite geeky
about this sort of thing.

• Mit yndlingscitat handler om en nørdet hukommelsescelle. My
favourite quote is about a nerdy memory cell.

10. (lidt mærkelig eller socialt akavet) socially awkward, oddball
• Troels Lund Poulsen kan virke lidt nørdet. Troels Lund Poulsen can

come across as a bit socially awkward.
• Hun er både ambitiøs og nørdet. She’s both ambitious and a bit of an

oddball.
11. (kompliceret eller teknisk i natur) technical, techy

• Det er egentligt ret nørdet, men også ret fedt. It’s actually quite
technical, but also pretty cool.

• Flere og flere får noget så nørdet som en sous vide. More and more
people are getting something as techy as a sous vide.

• Det er lidt nørdet og følelsesmæssigt, forklarer hun. It’s a bit technical
and emotional, she explains.

The sample demonstrates that the system meets its intended goals:

12. Consistency: Entries follow a standardised format, making them easy to compare
and integrate into a larger lexicographic project.

13. Transparency: All processing steps are preserved, with examples traceable to
corpus data and outputs open to inspection and correction.

14. Hallucination: Artefacts are rare and typically arise from corpus or translation
noise; genuine hallucination is minimal and easily caught.

15. Originality: Content is generated afresh, without replicating existing dictionary
entries.

16. Editability: The output format is designed for direct use in a dictionary editing
environment.

The translations are generally idiomatic, though often freer than a traditional dictionary
might allow. More literal renderings can be obtained by adjusting the translation prompt.8
Moreover, since concordance lines often lack full context, the model may misinterpret
subtle discourse cues or thematic roles during shortening.

In sum, the system enables rapid prototyping of dictionary entries with clear separation
of concerns, rigorous validation and human-in-the-loop flexibility. It offers a practical
platform for experimentation, research and, potentially, production-level lexicography.

This remains ongoing work, and a formal evaluation with practising lexicographers has not
yet been conducted. The pipeline and source code have been released publicly to invite
testing and feedback from the wider community, which, together with ongoing testing at
the Danish Language Council, will provide valuable insights for further refinement.

A typical dictionary entry using the .mdx file described here uses roughly 8,000–10,000
tokens per full run (five stages), corresponding at current prices to a cost of approximately
0.05–0.06 USD per entry.

8 Prompt design remains an art as much as a science; getting the right balance often takes experimentation.

41

4.1 Scope and Limitations

Inflectional paradigms and pronunciation were deliberately excluded from the current
system. These components are better sourced from established resources such as the
Central Word Register of Danish (the “COR”: Widmann (2023)) or Wikidata, rather than
inferred via generative models. Future work may explore integrating structured lexical
databases to support these features more robustly.

5. Conclusion

This paper has presented a functioning system for automatic generation of draft dictionary
entries in XML format using ChatGPT. By decomposing the lexicographic process into a
sequence of narrowly constrained, auditable steps, the system mitigates the well-known
limitations of large language models in the areas of consistency, transparency, hallucination,
originality and editability.

The system is fast, flexible and domain-agnostic. It supports dictionary creation for under-
resourced languages, specialised domains and small corpora without sacrificing editorial
oversight. Its architecture is fully language-independent, making it especially well suited
to contexts where rapid prototyping is more valuable than exhaustive coverage.

While the system is designed to run fully automatically, it allows human intervention at
any stage. This dual capacity enables both hands-off operation and fine-tuned human-
in-the-loop editing – making the system adaptable to different workflows and editorial
preferences. Crucially, it does not aim to replace human expertise but to elevate it: editorial
judgement remains central, but the focus shifts from mechanical drafting to strategic
decision-making and final validation.

In short: LLMs can assist, not replace. Structured workflows, corpus grounding and formal
validation provide a pragmatic and sustainable path forward for the next generation of
lexicography. By enforcing strict validation and traceability, the system also offers a model
for responsible LLM use in dictionary production, reducing both ethical and legal risks.

To support reproducibility and reuse, the entire system – including Python source code,
modular prompt files, DTD definitions and output formatting tools – is available on
GitHub: https://github.com/twidmann/ai-lexicography. Released under the MIT Licence,
the system is intended as both a demonstration of responsible LLM use in lexicography and
a foundation for adaptation to other languages, dictionary types and editorial workflows.

5.1 Future Work and Outlook

Looking ahead, several avenues remain open for extension. The current system deliberately
omits morphological data, pronunciation and etymology – areas better served by formal
lexical resources such as the COR or Wikidata. Future versions may integrate these
automatically where high-quality data exist, or flag them for manual post-editing.

Longer term, more speculative challenges also emerge. As AI systems increasingly assist
or even replace humans in drafting, translating and interpreting texts, the audience and
function of dictionaries may shift. Lexicographic output may need to be optimised not

42

https://github.com/twidmann/ai-lexicography

just for printed dictionaries, but also for spoken ones (Tavast et al., 2023), interactive
formats or those designed for LLM consumption. This raises foundational questions about
the status of dictionaries in an AI-mediated linguistic landscape.

Paradoxically, we now possess the capacity to produce more dictionaries than ever before
– rapidly, inexpensively and across countless domains – just as the traditional demand for
standalone dictionaries may be waning. At the very least, the system presented in this
article helps to lower the cost of producing them. Whether as a research tool, production
engine or editorial assistant, it offers a flexible foundation for future lexicographic work.

Software

Attardi, G. (2015). WikiExtractor. https://github.com/attardi/wikiextractor.
de Schryver, G.M. & Joffe, D. (2023). The end of lexicography, welcome to the machine.

https://www.youtube.com/watch?v=mEorw0yefAs. Paper presented at the 20th
CODH Seminar, National Institute of Informatics, Tokyo, Japan.

Nichols, W. (2023). Invisible lexicographers, AI, & the future of the dictionary. https:
//www.youtube.com/watch?v=xYpwftj_QQI. Keynote presented at the eLex
conference.

Rundell, M. (2023). Automating the Creation of Dictionaries: Are We Nearly There? In
Proceedings of the 16th International Conference of the Asian Association for Lexicogra-
phy: Lexicography, Artificial Intelligence, and Dictionary Users. Seoul: Yonsei University,
pp. 1–9.

Tavast, A., Rundell, M., Rychlý, P., Kokol, M. & de Schryver, G.M. (2023). eLex ChatGPT
Round Table. https://www.youtube.com/watch?v=dNkksTDYa_s. YouTube video.

Widmann, T. (2023). The Central Word Register of the Danish language. In Electronic
lexicography in the 21st century (eLex 2023): Invisible Lexicography. Proceedings of
the eLex 2023 conference. Brno: Lexical Computing CZ s.r.o., pp. 91–103. URL https:
//elex.link/elex2023/wp-content/uploads/elex2023_proceedings.pdf#page=91.

Widmann, T. (2025a). ai-lexicography: Corpus-based lexicography using the OpenAI API.
https://github.com/twidmann/ai-lexicography.

Widmann, T. (2025b). ChatGPT som leksikograf: Ordbogens fremtid? In 20. Møde om
Udforskningen af Dansk Sprog. Aarhus, Denmark: Institut for Kommunikation og Kultur,
Aarhus Universitet, pp. 427–442. Presented October 2024.

43

https://github.com/attardi/wikiextractor
https://www.youtube.com/watch?v=mEorw0yefAs
https://www.youtube.com/watch?v=xYpwftj_QQI
https://www.youtube.com/watch?v=xYpwftj_QQI
https://www.youtube.com/watch?v=dNkksTDYa_s
https://elex.link/elex2023/wp-content/uploads/elex2023_proceedings.pdf#page=91
https://elex.link/elex2023/wp-content/uploads/elex2023_proceedings.pdf#page=91
https://github.com/twidmann/ai-lexicography

	Bridging human and AI perspectives: semantic annotation of generic nouns in German

