Handling abstract constructions

in a dictionary-based constructicon

Balint Sass!, Eva Domotor!, Balazs Indig?, Matyas Lagos Cortes®,
Veronika Lipp', Marton Makrai?, Gergely Peth&’

'ELTE Research Centre for Linguistics, Institute for Lexicology
2 ELTE University, Faculty of Informatics
3 ELTE Research Centre for Linguistics, Institute for General and Hungarian Linguistics
4 HUN-REN Research Centre for Natural Sciences, Institute of Cognitive Neuroscience
and Psychology
® University of Debrecen
E-mail: sass.balint@nytud.hu, domotor.eva@nytud.hu, indig.balazs@inf.elte.hu,
lagos.matyas@nytud.hu, lipp.veronika@nytud.hu, makrai.hlt@gmail.com,

pagstudium@gmail.com

Abstract

Taking seriously the common construction grammar statement that “it’s constructions all
the way down” (Goldberg, 2006: 18), the Hungarian Constructicon aims to encompass the
widest possible range of constructions. As it is a dictionary-based constructicon, it naturally
contains what a dictionary can provide — from morphemes to words, and to partially
schematic multiword constructions containing open slots. What had been missing were
the more schematic abstract constructions. In this paper, we have added some important
constructions of this kind to the database of the constructicon as an experiment, and have
enhanced the integrated analyzer tool to handle them appropriately. Now, the system has
the machinery to recognize all types of constructions in text and display them to the user.
Thanks to the integration of abstract constructions, it does not present constructions in
isolation; it reveals the intertwined nature of them, their connections and interactions
instead. This results in a fundamentally extended functionality compared to a dictionary.
A case study in Section 5 demonstrates the capabilities of the system. The list of the
integrated abstract constructions is far from complete, expanding it remains future work.

Keywords: construction; constructicon; abstract construction; constructional schema;
lexicon-grammar continuum

1. Introduction

Imagine a lexical resource which covers the language as a whole on the one hand, and has
an analyzer tool built upon its content, its entries on the other, which processes text and
uncovers linguistic phenomena from it.

This paper describes our efforts to get one important step closer to the above goal. We
supplement a dictionary-like database with a small set of abstract constructions and develop
procedures to handle these, together with the original more concrete, fixed constructions,
in a uniform manner at both the database and the analyzer tool levels.

189

Our theoretical background is the construction grammar framework (Goldberg, 2006).
According to the classical definition, constructions are pairings of form and meaning (or
function) that cannot be inferred but must be learned. They cover all levels of language
from morphemes even to abstract schemas, as Hilpert (2014) puts it “a person’s knowledge
of language consists of nothing but constructions”. This principle has particular importance
for us as our goal is to handle preferably all linguistic phenomena uniformly.

Since, according to the above, all linguistic phenomena are constructions, the database
mentioned above can be called a constructicon. This is the inventory of all constructions,
i.e. everything that is part of a language. Dictionaries contain words, constructicons contain
constructions. As words are constructions themselves, they are in the constructicon by
default. Therefore, a constructicon can be considered an enhanced dictionary or a superset
of a dictionary. Nowadays, an evolving field of lexicography called constructicography
studies the topics of constructicon building and their properties (Lyngfelt et al., 2018a).
Several constructicons are currently being built for different languages (cf. Section 3).

The language which we deal with is Hungarian, and we largely build on the work described
by Sass (2024). The approach is dictionary-based, meaning that in order to collect construc-
tions, it starts from the set of linguistic elements found in a particular dictionary. Beyond
words, it obtains morphemes, multiword units, and partially schematic constructions with
fixed and variable elements both as well this way. What has been missing, are the more
schematic abstract constructions — especially those that consist of no fixed elements at
all. Our aim here is to supplement the data from the dictionary with some such abstract
constructions in order to achieve a more complete coverage of all types of constructions.

The resulting lexical resource is traditional in one sense: it has entries with descriptions
and examples and does not use recent technologies such as LLMs for any subtasks. At
the same time, however, it is novel and unconventional in two respects — in terms of its
content and its operation. Concerning content, by taking the principles of construction
grammar strictly seriously and targeting all types of constructions, it could serve as a
practical test of the construction grammar approach in its ability to describe language.
We can view abstract constructions as grammatical rules. From this perspective, our work
aligns with a classic principle of construction grammar — namely, that the lexicon and the
grammar form a continuum (Boas, 2010). It should be noted that our approach is rather
unique among constructicons in its intended comprehensiveness. Other constructicons
tend to focus on certain specific types of constructions, most often partially schematic
ones (e.g. Janda et al., 2020). Concerning operation, the main point is that the resulting
lexical resource has an integrated analyzer tool. This tool does not do just some kind of
dictionary lookup, but it takes an arbitrary short text excerpt as input and dynamically
extracts both concrete and abstract interacting constructions from it.

2. Formal classification of constructions

In terms of their form, constructions can be considered as combinations of slots and
fillers (cf. Diessel, 2023: 3.4), which is in line with the model that we use. Based on this,
constructions can be classified into three groups: (1) fully fized constructions, consisting of
fixed elements exclusively, (2) partially schematic constructions, consisting of both fixed
elements and open slots, and (3) fully schematic constructions, consisting of open slots
exclusively (Lyngfelt et al., 2018b).

190

Fully fixed constructions are morphemes, words, and fixed multiword expressions. Sayings
and even proverbs belongs to this group if they contain no open slots. This group includes,
for example, ‘-ban’ which is a Hungarian case marker, a bound morpheme meaning
something like the preposition in; ‘avokddé’ (avocado) or any simple words; completely
non-mutable MWEs such as ‘ad hoc’; and mutable ones as well, like ‘¢l és virul’ (‘live and
thrive’) or “ivegbura alatt él’ (‘glass.dome under live’ = live in a bubble).

Partially schematic constructions can be placed along a scale according to of how many of
their slots are filled. For example, ‘részt vesz -ban’ (‘part. ACC take in’ = take part in)
has two filled and one open slot, while ‘ad -nek -t’ (give IOBJ OBJ) is just the opposite,
so the latter is considered more schematic. Beyond these more concrete cases, there are
schema-like constructions in this group as well that do not consist solely of a content-word
head and its complements, but instead embody more general patterns, in which the formal
head can be an open slot itself. For example, ‘ha VP, akkor VP’ (if VP, then VP) which
is the general schema for if-then sentences. Or, to take an example that truly lies on the
border of lexicon and grammar, demonstrating the potentials of construction grammar:
‘ADJ wvolt N-tol, hogy VP’ (‘ADJ was from N that VP’ = it was ADJ of N to VP) (see
Figure 1). We will call the above two constructions ‘_if-then’ and ‘_adj-of-to’ respectively.
Following from the above, we divide the group of partially schematic constructions into
two, termed head-complement constructions and cheese-with-holes constructions. The latter
term refers to the fact that open slots can appear in any position within these constructions
(for further details on this see Section 4).

Kedves volt Anyatél, hogy elmosogatott.

Kedves volt Anya-tél , hogy elmosogatott.
nice was Mom.FROM that wash.the.dishes.PAST.S3

It was nice of Mom to wash the dishes.

¢

Figure 1: A realization of the ‘ adj-of-to’ construction

Fully schematic constructions, or, as Diessel (2023: 3.1) calls them, constructional schemas,
form the last group. An example of this group is the attributive adjective construction,
denoted by ¢ _adj-n’ in our resource. The second example of this group is the possessive
construction: ‘N; No.POSS’ (N1’s Ny) denoted by ‘ poss1’. While in English the possessor
is followed by ’s, in Hungarian the possessive marker appears on the possessed noun (see
Figure 2).

Péter konyve

okos gyerek Péter konyv-e
clever kid Peter book.POSS

Peter’s book

(

Figure 2: Realizations of the ‘ adj-n” and ° poss1’ constructions respectively

As a result of the above, we separate the set of constructions into four groups instead of
the conventional three (Table 1). We define the term abstract constructions as including

191

both cheese-with-holes constructions and fully schematic constructions. They do share a
formal property, namely the possible locations of open slots within the construction.

Lyngfelt et al. (2018b)|fully fixed partially schematic fully schematic

refined classification|fully fixed|head-complement|cheese-with-holes|fully schematic

defining abstract constructions concrete abstract

Table 1: A refined classification of constructions and terminology used in this paper

The focus of this paper is on abstract constructions. These are the constructions that are
“more interesting”: unlike concrete constructions, they tend not to appear in a dictionary,
at least not as a headword, so the constructicon needs to be supplemented by them. By
convention, we use an ‘_’ mark at the beginning of all abstract constructions. Abstract

constructions mentioned in this paper are summarized in Section 7.

3. Comparison with other constructicons and our approach

There are several ongoing constructicon-building projects, as well as a number of well-
developed, mature constructicons built over the last decade. The overall basic structure of
constructicons is the following: there is a database of constructions, often supplemented by
a user interface. The basic functionality of such user interfaces is browsing. That is, the user
can search for certain constructions in a list or a drop-down. Clicking on a construction
reveals its properties which usually include its name, a more or less formalized description
of its form, description of its meaning and examples. We look at some constructicons in
the following paragraphs.

3.1 Constructicons for individual languages

The Swedish Constructicon (Lyngfelt et al., 2018b) matches the description above. Ad-
ditionally, it has free-text search, which in this case means that the user can search for
arbitrary text in the definition, meaning and examples fields of the database.

The German project calls itself the German FrameNet-Constructicon (Ziem et al., 2019),
emphasizing that they follow the original approach of Fillmore et al. (2012), namely,
building a constructicon on top of the German FrameNet. The user interface is similar to
the Swedish one: the user can browse constructions in the so called “Construction Index”,
but here all the frame elements are annotated in the examples in a very detailed way.
Additional tools are provided for investigating the constructions and the frames.

The Russian Constructicon (Bast et al., 2021) has a similar user interface as well, amended
by an advanced search interface that allows searching for different morphological and
syntactical properties, as well as language proficiency level. The database is freely down-
loadable.

The Estonian Constructicon (Vainik et al., 2024) is not being built on top of a FrameNet, but
it is closely connected to a large Estonian dictionary. Currently, constructional information
is being integrated into the lexicographical database. As the project is still a work in

192

progress, the database cannot yet be searched by constructions, only by individual words,
as it is common in an online dictionary interface.

As for now, the Italian Constructicon (Pannitto et al., 2024) is primarily a github repository
for collecting constructions, accompanied by a guide for annotating constructions in
dependency-parsed corpora. Currently, it has only the database component.

3.2 Discussion

As we mentioned in the introduction, two aspects are particularly important for us. We aim
to cover all types of constructions, and we would like to make our integrated analyzer tool
capable of recognizing all these construction types in arbitrary texts where they interact
with each other.

Constructicons which originate from a FrameNet, like the German one, obviously con-
tain many schematic constructions. However, they usually do not include the simplest
constructions: morphemes and words. They are often interconnected with a dictionary,
which provides information of these units, but this does not imply full integration, and
does not imply a unified treatment of all constructions and all connections between them
either. In contrast, constructicons which originate from a dictionary, like the Estonian
one, inherently contain words. The challenge is how to integrate schematic constructions
into the resource, and, again, working out the unified treatment. For us, the challenge is
similar: beyond the fully fixed ones, partially schematic head-complement constructions
were already part of the resource. We now expand it by adding abstract constructions,
to cover the entire range of construction types. It is the common representation of all
constructions what allows us to handle them uniformly (see Section 4).

As we saw, the main functionality of constructicons’ user interfaces is browsing. We can
say that they “start from the constructions” Our approach is different, we start from the
text. Browsing alone is not sufficient for us, we need the analyzer mentioned above. We
believe that our approach could be useful in L2 teaching and in L1 grammar classes as well,
as it presents the constructions in practice, it shows how they are used in real language,
what connections they have, how they fit together and how they cooperate with each other.
For example, the user can modify parts of the input text and immediately see how the
identified constructions change. While most constructicons, including the MoCCA project
(Lorenzi et al., 2024), can be considered primarily theoretical, ours is more practically
oriented and can serve as a tool to demonstrate the usefulness of construction grammar at
work.

Janda et al. (2020: 163) state that “The constructicon of a language is an open-class
inventory that is potentially limitless. Therefore it would be unrealistic to expect to produce
a comprehensive constructicon resource.” She then notes that, as there are different kinds
of lexical and grammatical resources that cover parts of the lexicon-grammar continuum,
all that is left for constructicographers is to focus on the parts traditionally not covered by
dictionaries, i.e. partially schematic constructions, or as she puts it “entrenched multi-word
expressions that contain at least one open (not fixed) slot”.

To put our point yet another way: we clearly disagree with the above reasoning. Firstly, this
reasoning forgets about the fundamental principle of construction grammar, which collects
all form—meaning pairs into a single set, and secondly, it forgets about the importance

193

of revealing the connections between constructions, inside this set, regardless of their
complexity. That is why we are attempting to at least partially address this “unrealistic”
task.

4. Representation and algorithm

The common representation of constructions is based on the fact that filler-slot structures
can be directly represented as trees: slots correspond to edges and fillers to nodes (Sass,
2024). We use slightly modified UD (de Marneffe et al., 2021) dependency trees, with one
modification: the oblique dependency relations are broken down into specific relations
according to Hungarian cases (ACC for ~t’ (object), INE for ““ban’ (in), etc.).

afonya ‘ R N
amod:att det amod:att

. . / - - b S

vOros a N)

Figure 3: Representation of three constructions from the database

Similarly to headwords in a dictionary, we use the term head-construction for the construc-
tions as they are in the constructicon database. Figure 3 shows the representation of three
head-constructions, one from each class described in Section 2. The first one is fully fixed,
while the other two are abstract. The second is partially schematic having an open slot at
root node (depicted as a dashed ellipse), and the third is fully schematic, consisting of open
slots exclusiely. Concerning their meaning: the last one is the above mentioned ‘ _adj-n’
construction (see Figure 2). The middle one is the definite article construction, ¢ _det’. It
is formalized as a partially schematic cheese-with-holes construction in the database: its
open slot is for the noun, and its filled slot contains the concrete definite article form. The
first one is ‘virds dfonya’ (‘red berry’ = lingonberry). This is a full-fledged construction
with its own meaning: it is not just some berry that happens to have a certain color, it is
the name of a specific type of berry. It is formally an adjective and a noun, but this inner
structure is obscured by the fact that it is a construction on its own (cf. Section 6).

Abstract constructions are added to the database manually. Their entries have a structure
similar to that of other constructions: form, meaning, examples, and representation.
The difference is that they have a specific identifier (beginning with a °_’), and their
formal representation is manually crafted and verified. Entries for newly added abstract
constructions naturally integrate into the system. They are just new items in the set of
constructions.

The algorithm which recognizes the head-constructions in an input text operates as
followins: it analyzes the input and creates the same kind of tree representation for it as
the head-constructions have in the database, searches for matching head-constructions at
the root node, chooses the longest one as the recognized construction, removes it from the

194

representation of the input text, and then applies this method recursively to the remaining
parts of the tree.

The basic algorithm was available (Sass, 2024), the important functionality what we added
is that we adapted it for the treatment of abstract constructions, namely, constructions
which can have open slots not just in the leaves of the tree but anywhere—i.e. at the root
node or at any other intermediate node. For example, see Figure 3(b) and the left side of
Figure 6(b) below. This was the crucial step that made the system work for all classes of
constructions.

The length of a construction is measured this way: an open slot is worth one and a filled
slot is worth two. It is important that after removing a head-construction from the input
tree, the nodes which correspond to open slots are retained in their original form, in order
to allow other constructions to match there. We use udpipe (Straka et al., 2016) inside
our analysis for dependency parsing. We note that for our approach it is not problematic
if the analysis that produces the representation is imperfect in any way. What matters for
us that the analysis used to create formal representations in the database is the same as
the one used for analyzing input. For this reason, if the head-construction in question is
present in the input text, they will match.

All of the above will be illustrated in the next section.

The custom-made XML representation of abstract constructions may be of interest to the
reader, so it is shown in Figure 4, however, it should be noted that this internal format
may change in the future. The lemma itself is just an identifier beginning with ¢’ The
most important part is the tree representation of the construction in the depana attribute.
It is just a custom-made textual representation of the tree, //, @@ and _ representing
edges, edge-label-node-label separators and open slots, respectively. For now, part of speech
(<pos>) simply indicates that this entry is an abstract construction. The definition of the
construction (<def>) and an example (<eg>) are provided in the <sensevar> tag. This
construction can be explored in action at https://bit.ly /szerkezettar-okos-gyerek.

<entry id="id-x00001">
<lemma depana="@@_ //amod:att@@_">_adj-n</lemma>
<gramgrp><pos>abstr-cxn</pos></gramgrp>
<sensevar>
<def>
jelzd + fonév ("jelzds fénév"):
a <mention>fdnév</mention> a <mention>jelzd</mention>
dltal megadott tulajdonsiggal bir.
</def>
<eg>magyar ember, hosszi id&.</eg>
</sensevar>
</entry>

Figure 4: Internal XML representation of ‘_adj-n’ (see Figure 3(c)) in the database of the
constructicon

195

https://bit.ly/szerkezettar-okos-gyerek

5. Case study

In this section, we demonstrate the operation of the algorithm. Figure 6 shows how the
algorithm for recognizing interacting constructions works on a complex example. This
example features a Hungarian sentence containing several interesting constructions of
different types (Figure 5).

Ha részt vesz a munkéaban, akkor szép fizetést kap.

Ha rész-t vesz a munka-ban , akkor szép fizetés-t kap.
if part.ACC take.SG3 the work.IN then nice salary. ACC receive.SG3

If he takes part in the work, then he receives a nice salary.

Figure 5: Input text for the main example

What follows is a step-by-step overview of how the sentence in Figure 5 is processed,
using the illustrations in Figure 6. The tree representation of the example sentence is
shown in Figure 6(a). While two of the relevant head-constructions are depicted on the
left side of the figure, the right side of the figure shows the tree representation of the input
text being dismantled as more and more head-constructions are identified and removed.
Constructions being recognized are marked with a green circle, recognized open slots
belonging to them are marked with green underlining. It should be emphasized that these
open slots are inherent parts of these constructions. Serial numbers of constructions in the
figure correspond to their serial number in the following overview.

79.

80.

81.

82.

83.
84.

The first recognized construction is an °_if-then’. This is an abstract construction
with two open slots for the two verbs (see the left side of Figure 6(b)). It matches
at the root node (kap) of the tree representation of the text to be processed: edges
and filled slots are the same, and open slots just match any fillers. Of course,
the single-node ‘kap’ (receive) construction would match here as well, but as we
mentioned, the algorithm always chooses the longest matching construction. This
principle is crucial for the correct identification of constructions. Figure 6(c) shows
the state after removing this construction from the tree. The result is smaller trees
that are to be the subjects of further recognition of constructions recursively.
Proceeding in a depth-first manner, the next recognized construction is the single-
node ‘kap’ (receive). It now not only does match, but is also the longest one
considering the left-hand tree in Figure 6(c).

The next construction to handle is an *_adj-n’ which is a fully schematic construction
consisting of two open slots (see the left side of Figure 6(d)). It is the attributive
adjective construction, consisting of an adjective and a noun in this word order. Its
function is to express that the noun has the property described by the adjective.
Then we finish the processing of the left tree by recognizing the single-node ‘fizetés’
(salary) ...

... and ‘szép’ (nice).

Moving further to the right tree, a complex, partially schematic verbal head-
complement construction matches at the root node: ‘részt vesz -ban’ (take part in)
which has two filled slots and one open. Similarly to what we mentioned in item 1,
the single-node ‘vesz” (take) construction would also match here, but the algorithm
chooses the longest one from the set of matching constructions.

196

ACC advcl
PRO
’fizetés‘ ’ akkor‘ ’ vesz ‘
amod:att %:C INE
- ’ ha ‘ ’ rész ‘ ’munka‘

INE

fizetés

Figure 6: Demonstration of how the algorithm works. (a) The analyzed representation of
the main example. (b) The first recognized construction is an ‘_if-then’. It is shown as in
the database with its open slots on the left]9nd as matched in the text representation on
the right (circled and marked with #1). (c¢) The state after removing this construction.
(d) Recognizing further constructions inside the remaining smaller trees. ‘_adj-n’ is shown

A thoe 1aft ac an oavatrnnle Roacnonizoad coatmnalov (36 ot cirnaloa nanda) cAanctriiofinna aro

85. After removing all the recognized constructions above, we are left with ‘munka’
(work), ‘a’ (the) and the det (determiner) edge between the two, i.e. the rightmost
part of the right tree in Figure 6(d). The ¢ det’ (definite article) construction
matches here (cf. Figure 3).

86. As it normally the case, although opens slots are considered during matching, they
are not considered during removal and therefore they remain. Note that this occurs
twice concerning the ‘munka’ (work) node: it is the filler for the open slot at a
leaf of construction #6 and, at the same time, it is the filler for the open slot of
construction #7 at its root node. This is the only node that finally remains, so it
is recognized as a single-node construction: ‘munka’ (work).

Eight different constructions are there in this text, and, as we see, all of them are correctly
recognized by the Hungarian Constructicon. Four of them are single-node constructions,
they come from the original dictionary as is (together with their entries). One of them
(#6) is a partially schematic verbal head-complement construction, also coming from the
dictionary. The remaining three are abstract constructions, newly added to the database
of the constructicon: #1 and #7 are cheese-with-holes constructions, and #3 is a fully
schematic construction.

Note that the system is able to appropriately handle the cheese-with-holes constructions.
These are the constructions which have open slots not at the leaves but somewhere inside.
The best example for this the ¢ if-then’ (#1) construction depicted on the left side of
Figure 6(b).

All of the above can be seen during practical operation online at https://szerkezett
ar.hu (username: szerkezettar, password: belepes). Direct link to the sentence what
we discussed above is the following: https://bit.ly /szerkezettar-ha-reszt-vesz. The
constructicon processes the input text, reveals all eight interacting constructions from
it properly, and displays them to the user. The example demonstrates the fundamental
guiding principle of our approach, which is in line with the principles of construction
grammar: all constructions has equal status and are processed uniformly, regardless of
their complexity. The depth-first manner of the processing is reflected in the order in
which constructions appear on the user interface.

All examples mentioned in the paper are available on the site as clickable examples, and
arbitrary short Hungarian texts can also be entered and tested.

6. Absorption

In Section 4, we mentioned that the inner structure of a construction is obscured by the
fact that it is a construction on its own, with its own meaning, which must be learned. We
call this phenomenon absorption.

Since the large construction has its own meaning, which can not be inferred from the
meanings of its parts, it is no longer important what kinds of constructions can be discovered
inside it just by their form. The meaning of these smaller forms is no longer relevant in
terms of the meaning of the large construction. If it were relevant, the meaning of the
large entity could be inferred, and thus the large entity would not be a construction by
definition. Since these smaller units have lost their meaning, they are no longer considered

198

https://szerkezettar.hu
https://szerkezettar.hu
https://bit.ly/szerkezettar-ha-reszt-vesz

constructions—they are absorbed. They can not be investigated from a construction
grammar point of view, but, of course they can still be examined from a purely syntactic
point of view.

For example, ‘virds dfonya’ (‘red berry’ = lingonberry) (taken from Figure 3(a)) is one
construction that has its own meaning. In contrast, ‘okos gyerek’ (clever kid), which has
exactly the same inner syntactic structure, i.e. an adjective plus a noun, is a combination
of three constructions: ‘_adj-n’, ‘gyerek’ (kid) and ‘okos’ (clever). The meaning of each of
these three constructions must be learned separately, and the overall meaning is simply
derived from the sum of their individual meanings. In other words, constructions have non-
compositional meaning. This statement is not surprising at all, it is just a straightforward
consequence of the definition of constructions. The two constructions above can be studied
at https://bit.ly /szerkezettar-voros-afonya and https://bit.ly /szerkezettar-okos-gyerek on
the online user interface.

In line with the concept of absorption, the absorbed units are ignored by our system: they
are not identified as constructions and they are not displayed, for example ‘hogy’ (that) in
‘_adj-of-to’; or ‘rész’ (part) or transitive ‘vesz’ (take) in ‘részt vesz -ban’ (take part in).
This behavior is realized by the algorithm, primarily through its longest-match principle,
which ensures that when multiple candidate constructions exist, the one spanning the
most edges and nodes is selected.

7. List of new abstract constructions

Abstract constructions which has been added to the constructicon database and mentioned
in this paper are listed here. Some of them are very frequent constructions, while others
are more complex, more interesting ones.

87. ‘ _adj-n’ attributive adjective construction (fully schematic)
Example: ‘okos gyerek’ (clever kid).
See Figure 2, Figure 3(c) and also Figure 4.
88. ‘ possl’ possessive construction (fully schematic)
Example: ‘Péter kinyve (‘Peter book.POSS’ = Peter’s book)
See Figure 2.
89. ‘ poss2’ prepositional possessive construction (cheese-with-holes)
Example: ‘Péternek a kinyve’ (‘Peter.DAT the book.POSS’ = the book of Peter)
In Hungarian, a dative/genitive case marker is used.
90. ‘ det’ definite article construction (cheese-with-holes)
Example: ‘@ munka’ (the work)
See Figure 3(b).
91. ‘_adj-of-to’ (a kind of evaluative construction) (cheese-with-holes)
Example: ‘Kedves volt Anydtdl, hogy elmosogatott.” (It was kind of Mom to wash
the dishes.)
See Figure 1.
92. ‘ if-then’ conditional construction (cheese-with-holes)
Example: ‘Ha f6z, akkor eszik.” (If he cooks, then he eats.)
See Figure 6(b).
93. ° this’ demonstrative construction (cheese-with-holes)
Example: ‘erre az évre’ (‘this.SUB the year.SUB’ = for this year)

199

https://bit.ly/szerkezettar-voros-afonya
https://bit.ly/szerkezettar-okos-gyerek

8. Conclusion

In this paper, we supplemented the database of the Hungarian Constructicon with some
abstract constructions and made the integrated analyzer tool capable of handling these
kind of constructions appropriately. Being dictionary-based, the constructicon had so far
lacked these types of constructions. Now, the system has the technical capability to handle
all kinds of constructions: morphemes, words, fixed multiword expressions, expressions with
open slots, and fully schematic constructions included. This extension is demonstrated
using seven abstract constructions currently included in the database. Constructions
extracted dynamically from input texts are displayed on the user interface, showing how
they interact and cooperate with each other. This functionality represents a fundamental
extension beyond what online dictionaries provide and foreshadows how constructicons
could be some kind of enhanced dictionaries and grammar resources at the same time in
the future, covering the full lexicon-grammar continuum. Future work includes adding
more abstract constructions to the Hungarian Constructicon. The operation of the system
can be explored online at https://szerkezettar.hu (username: szerkezettar, password:
belepes), where all examples discussed in this paper can be tested.

Acknowledgements

The research described in this paper was supported by the OTKA (K 147452) grant of
the National Research, Development and Innovation Office (NKFIH), Hungary. Project K
147452 is being implemented with the support provided by the Ministry of Culture and
Innovation of Hungary from the National Research, Development and Innovation Fund,
financed under the K_ 23 funding scheme.

This paper was also supported by the Janos Bolyai Research Scholarship of the Hungarian
Academy of Sciences (BO/00260/25/1).

For polishing the English of this paper, generative Al was used.

List of abbreviations

Universal Dependencies (de Marneffe et al., 2021) codes for dependency relations:

e advcl — adverbial clause modifier

e amod:att — attributive adjectival modifier
e det — determiner

e mark — subordinate marker

As mentioned in Section 4, we break down the obl (oblique) relation of UD into specific
relations according to Hungarian cases, which are the following:

ACC — case marker -t for object

DAT — case marker -nak/-nek for for
INE — case marker -ban/-ben for in
PRO — case marker -kor for at

SUB — case marker -ra/-re for for

200

https://szerkezettar.hu

Other abbreviations used in glosses:

FROM - a counterpart for Hungarian case marker -tdl/-tél
IN — a counterpart for Hungarian case marker -ban/-ben
IOBJ — indirect object

OBJ - object

PAST — past tense suffix

POSS — possessive marker

SG3 — 3rd person singular

Software

Bast, R., Endresen, A., Janda, L.A., Lund, M., Lyashevskaya, O., Mordashova, D., Nesset,
T., Rakhilina, E., Tyers, F.M. & Zhukova, V. (2021). The Russian Constructicon. An
clectronic database of the Russian grammatical constructions. URL https://constructi
con.github.io/russian.

Boas, H.C. (2010). The syntax-lexicon continuum in Construction Grammar: A case study
of English communication verbs. Belgian Journal of Linguistics, 24(1), pp. 54-82.

de Marneffe, M.C., Manning, C.D., Nivre, J. & Zeman, D. (2021). Universal Dependencies.
Computational Linguistics, 47(2), pp. 255-308. URL https://aclanthology.org/2021.cl-2
117

Diessel, H. (2023). The Constructicon. Cambridge University Press.

Fillmore, C.J., Lee-Goldman, R. & Rhomieux, R. (2012). The FrameNet Constructicon. In
H.C.B..LA. Sag (ed.) Sign-Based Construction Grammar. Stanford: CSLI Publications,
pp. 309-372.

Goldberg, A.E. (2006). Constructions at work: The nature of generalization in language.
Oxford University Press.

Hilpert, M. (2014). Construction Grammar and Its Application to English. Edinburgh
University Press.

Janda, L., Endresen, A., Zhukova, V., Mordashova, D. & Rakhilina, E. (2020). How to
build a constructicon in five years: The Russian example. Belgian Journal of Linguistics,
34, pp. 162-175.

Lorenzi, A., Ljunglof, P., Lyngfelt, B., Timponi Torrent, T., Croft, W., Ziem, A., Bobel,
N., Backstrom, L., Uhrig, P. & Matos, E.E. (2024). MoCCA: A Model of Comparative
Concepts for Aligning Constructicons. In H. Bunt, N. Ide, K. Lee, V. Petukhova,
J. Pustejovsky & L. Romary (eds.) Proceedings of the 20th Joint ACL - ISO Workshop
on Interoperable Semantic Annotation @ LREC-COLING 2024. Torino, Italia: ELRA
and ICCL, pp. 93-98. URL https://aclanthology.org/2024.isa-1.12/.

Lyngfelt, B., Borin, L., Ohara, K. & Torrent, T.T. (eds.) (2018a). Constructicography:
Constructicon development across languages. Amsterdam: John Benjamins.

Lyngfelt, B., Bickstrom, L., Borin, L., Ehrlemark, A. & Rydstedt, R. (2018b). Construc-
ticography at work: Theory meets practice in the Swedish Constructicon. In Lyngfelt
et al. (2018a), pp. 41-106.

Pannitto, L., Bernasconi, B., Busso, L., Pisciotta, F., Rambelli, G. & Masini, F. (2024).
Annotating Constructions with UD: the experience of the Italian Constructicon.

Sass, B. (2024). The “Dependency Tree Fragments” Model for Querying a Constructicon. In
K. S. Despot, A. Ostrogki Ani¢ & I. Bra¢ (eds.) Lezicography and Semantics. Proceedings
of the XXI FURALEX International Congress. Cavtat: Institut za hrvatski jezik, pp.
275-283.

201

https://constructicon.github.io/russian
https://constructicon.github.io/russian
https://aclanthology.org/2021.cl-2.11/
https://aclanthology.org/2021.cl-2.11/
https://aclanthology.org/2024.isa-1.12/

Straka, M., Haji¢, J. & Strakova, J. (2016). UDPipe: Trainable Pipeline for Processing
CoNLL-U Files Performing Tokenization, Morphological Analysis, POS Tagging and
Parsing. In N. Calzolari, K. Choukri, T. Declerck, S. Goggi, M. Grobelnik, B. Maegaard,
J. Mariani, H. Mazo, A. Moreno, J. Odijk & S. Piperidis (eds.) Proceedings of the Tenth
International Conference on Language Resources and Evaluation (LREC’16). Portoroz,
Slovenia: European Language Resources Association (ELRA), pp. 4290-4297. URL
https://aclanthology.org/1.16-1680.

Vainik, E., Paulsen, G., Sahkai, H., Kallas, J., Tavast, A. & Koppel, K. (2024). From
a Dictionary to a Constructicon: Putting the Basics on the Map. In K. S. Despot,
A. Ostroski Ani¢ & 1. Brac (eds.) Lezicography and Semantics. Proceedings of the XXI
FEURALEX International Congress. Institute for the Croatian Language, pp. 209-216.

Ziem, A., Flick, J. & Sandkiihler, P. (2019). The German Constructicon Project: Framework,
methodology, resources. Lezicographica, 35(2019), pp. 15-40.

This work is licensed under the Creative Commons Attribution ShareAlike 4.0 International
License.
http://creativecommons.org/licenses/by-sa/4.0/

202

https://aclanthology.org/L16-1680
http://creativecommons.org/licenses/by-sa/4.0/

	Bridging human and AI perspectives: semantic annotation of generic nouns in German

