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Abstract

We report on a series of word sense induction (WSI) experiments conducted on a corpus of
Buddhist Sanskrit literature with an objective to introduce a degree of automation in the
labour-intensive lexicographic task of matching citations for a lemma to the corresponding
sense of the lemma. For this purpose, we construct a Buddhist Sanskrit WSI dataset
consisting of 3,108 sentences with manually labeled sense annotations for 39 distinct lemmas.
The dataset is used for training and evaluation of three transformer-based language models
fine-tuned on the task of identifying intended meaning of lemmas in different contexts. The
predictions produced by the models are used for clustering of lemma sentence examples
into distinct lemma senses using a novel graph-based clustering solution. We evaluate how
well do the obtained clusters represent the true sense distribution of new unseen lemmas
not used for model training and report the best Adjusted Rand Index (ARI) score of
0.208, and how well do the clusters represent the true lemma sense distribution when the
classifier is tested on new unseen sentence examples of lemmas used for model training
and report the best ARI score of 0.3. In both scenarios, we outperform the baseline by a
large margin.

Keywords: Buddhist Sanskrit; Word sense induction; Transformer language models

1. Introduction

Buddhist Sanskrit literature constitutes the textual foundation of Mahāyāna, one of the
main branches of Buddhism, which flourished in India from around the first couple of
centuries BCE to the XII century CE. The experiments reported in this paper stem from
a long-standing lexicographic project aimed at creating a first corpus-based dictionary
of Buddhist Sanskrit vocabulary (Lugli, 2019, 2021a). Relatively little is known about
the semantic permutations that this vocabulary undergoes in different periods and text
types, a corpus of relevant sources having become available only recently ((Lugli et al.,
2022)). Hence, mapping word senses across various subcopora of Buddhist literature is a
priority in our dictionary and, more generally, in the field of South Asian Buddhist studies.
Alas, such mapping is extremely laborious. It requires close reading large quantities of
citations for a given lemma. Many of these citations are extracted from highly specialised
philosophical discourse and are often challenging to interpret. It took us the most part
of a decade to semantically categorize a sample of just over four thousand citations that
instantiate word-senses for about 130 lemmas in different genres and periods of Buddhist
Sanskrit literature.
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Accelerating the process of semantic categorization is clearly the key to scaling up our
lexicographic endeavor and achieve a good coverage of the Buddhist Sanskrit lexicon. In
this paper we report on a series of word sense induction experiments that we attempted in
an effort to integrate a degree of automation in our semantic categorization workflow.

A word sense is a discrete representation of one aspect of the meaning and is context
dependent. Dictionaries and lexical databases, such as WordNet (Miller, 1992), organise
the entries according to different word meanings. Word Sense Disambiguation (WSD) and
Word Sense Induction (WSI) are two fundamental tasks in Natural Language Processing,
i.e., those of, respectively, automatically assigning meaning to words in context from a
predefined sense inventory and discovering senses from text for a given input word (Navigli,
2012). Both tasks are most frequently applied to open-class words, as those are carrying
most of a sentence’s meaning and contain higher level of ambiguity. While for WSD the
task consists of associating a word in context with its most appropriate sense from a
predefined sense inventory, WSI refers to automatically identifying and grouping different
senses of meanings of a word in a given textual context, without exploiting any manually
sense-tagged corpus to provide a sense choice for a word in context. The output of WSI is
a set of different occurrence clusters, which represent different meanings of a word. When
dealing with languages with available large sense inventories, usually WSD methods are
being used. On the other side, in less-resourced settings, such as in our case of Buddhist
Sanskrit literature, large sense repositories are not available and therefore WSI methods
are of core interest.

Therefore, the main aim of this paper is to introduce novel resources for Buddhist Sanskrit
related to WSI1, including:

• a novel word sense induction dataset for Buddhist Sanskrit containing 3108 sentences
with manually labeled sense annotations (see Section 3);

• a novel graph-based WSI solution that leverages predictions produced by the
transformer-based (Vaswani et al., 2017) language models fine-tuned on the binary
classification task of predicting whether the target lemma in two concatenated
sentences containing the lemma has the same sense or not;

• an extensive experimental evaluation of three distinct language models and two
clustering algorithms, one of them being the widely used Louvain algorithm (Que
et al., 2015).

The paper is structured as follows. After related work described in Section 2, we describe
the data used in Section 3. Section 4 covers the training of transformer models and
the novel clustering solution. Section 5 provides details on the evaluation scenarios, the
baselines used and the evaluation measures. While in Section 6 we present the results of
our experiments, the paper concludes with final remarks in Section 7.

2. Related work

Word sense induction and disambiguation tasks gained traction more then a decade ago,
when several shared tasks on the topic were organized, the most influental being the

1 The code for experiments is publicly available under the MIT license at https://gitlab.com/matej.mar
tinc/buddhist-sanskrit-sense-induction.
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Semeval-2010 task 14: Word sense induction and disambiguation (Manandhar et al., 2010)
and the SemEval-2013 Task 13: Word Sense Induction for Graded and Non-Graded Senses
(Jurgens & Klapaftis, 2013). In these challenges, one of the most common approaches was
to build a word co-occurrence graph and use the relations in the graph to obtain word
communities, which distinguish senses (Jurgens, 2011).

More recent approaches employ contextual embeddings (Devlin et al., 2019) for the WSI
task. For example, the approach by Amrami & Goldberg (2018) is based on the intuition
that occurrences of a word that share a sense, also share in-context substitutes. They use
a masked language model to derive nearest word substitutes for each word and then cluster
the obtained substitute vectors to derive word senses. This substitute-based approach
was improved on in the study by Eyal et al. (2022). They show that the approach by
Amrami & Goldberg (2018) can be adapted to efficiently and cheaply annotate all the
corpus occurrences of all the words in a large vocabulary. They induce senses to a word
using contextual representations from a language model and subsequently cluster them
into sense clusters. More specifically, for each sentence in which the word appears, they
generate k substitute tokens for the target word using a language model. Finally, they
cluster all the substitutes into sense clusters. We employ their approach as one of the
baselines in our work.

Another WSI method based on contextual embeddings is called PolyLM and was proposed
in Ansell et al. (2021). This method combines the task of learning sense embeddings by
jointly performing language modeling and word sense induction. This allows the model to
utilize the advantages of contextualization at the same training step as modelling senses.
PolyLM is based on two underlying assumptions about word senses: firstly, that the
probability of a word occurring in a given context is equal to the sum of the probabilities
of its individual senses occurring; and secondly, that for a given occurrence of a word, one
of its senses tends to be much more plausible in the context than the others. Similar to the
other language models, PolyLM is trained in an unsupervised manner on large corpora of
unlabeled data and at inference time performs word sense induction without supervision.

Another way to tag words senses is to employ Word Sense Disambiguation (WSD), if a
predefined sense inventory is available. These approaches can be roughly divided into
supervised WSD and knowledge-based WSD (see Bevilacqua et al. (2021) for a recent
survey). Knowledge-based approaches leverage lexical resources, including databases, such
as WordNet (Miller, 1992). One of the most popular knowledge-base WSD approaches is
the Lesk dictionary-based algorithm (Lesk, 1986), which also inspired one of the baseline
approaches in our work. More recent vector-based approaches leverage contextualized
word representations and sense embeddings to perform disambiguation (Wang & Wang,
2020). Other popular approaches leverage graph structure of knowledge graphs. A variety
of graph algorithms have been employed, including random walks (Agirre et al., 2014) and
Personalized PageRank (Scozzafava et al., 2020). While knowledge-base WSD (Pasini &
Navigli, 2017) does not require large annotated word-to-sense corpora, they on the other
hand do require a language-specific sense inventory, such as for example WordNet.

For the supervised WSD, an adequate amount of annotated data for training is required.
One of the first approaches was proposed by Zhong & Ng (2010), who decided to tackle the
task with an SVM-based approach. More recent studies on the other hand opted to include
neural representations into the workflow. For example, several contextual embeddings
based WSD approaches were tested in the scope of the SemDeep-5’s Word-in-Context task
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(Pilehvar & Camacho-Collados, 2019). During the task, several sense embedding systems
were tested on a binary classification task of determining whether a certain “focus” word
has or does not have the same sense in two concatenated sentences containing the word.
The approach employing BERT performed the best.

Following Bevilacqua et al. (2021), recent supervised WSD approaches can be grouped
into 1-nn vector-based ones (e.g., Wang & Wang (2020)), token tagger-based-ones (e.g.,
Bevilacqua & Navigli (2020) or sequence tagging-based ones (e.g., Huang et al. (2019)).

As far as we are aware, as of yet no WSI or WSD approaches have been employed for
Buddhist Sanskrit.

3. Dataset

The dataset used for our experiments is derived from the data we annotated for our
dictionary of Buddhist Sanskrit2, with some notable modification. First, for this study
we have considered only words for which more than 20 sentences have been manually
annotated for sense. Second, we simplified our lexicographic dataset to include a single
level of semantic annotation, out of three. We only use here annotations for word sense,
leaving aside the more fine-grained categorization into subsenses, as well as the more
general categorization into semantic fields–both of which are less closely linked to lexical
context and therefore less amenable to automation than word sense. Subsenses especially
have proven too complex to model due to their high number, with several words being
associated to more than eight of them. Finally, in a few cases we have altered the hierarchy
between senses and subsenses for this study, so that, whenever possible, senses are clearly
connected to a specific lexical context. In our original lexicographic data, our priority was
to convey the continuity between different senses of a word, especially between specialised
and general-language uses (Lugli, 2021b). So, in our dictionary data we typically subsume
terminological applications under the general-language sense from which they stem, even
when the lexical contexts in which the specialized uses occur are markedly different
from the general-language ones (see e.g. our dictionary sub voce “vitarka”). Given the
importance of lexical context for automated word-sense-induction, we revised our dataset
so that terminological uses that occur in specific contexts correspond to senses, rather
than subsenses, and are therefore considered as distinct semantic categories in this study.
The sense labels used in the dataset are the fruit of our lexicographic work and have been
crafted to serve as English paraphrases of the senses expressed by a Sanskrit lemma.

The Buddhist Sanskrit word sense induction (WSI) dataset we used here consists of 3,108
sentences with manually labeled sense annotations for 39 distinct lemmas. The dataset
statistics are presented in table 1. 26 of these lemmas have more than one sense (on
average 3.3 distinct senses), while 13 are monosemous, and are only used in some of the
experiments (see Section 5 for details).

The WSI dataset is used for fine-tuning and evaluation of three distinct transformer-
based language models (Devlin et al., 2019), pretrained on a corpus of Buddhist Sanskrit
literature.

2 https://zenodo.org/record/7972951
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Num.lemmas Num. sent. Num. tokens Average num. of senses
Monosemic 13 862 14,471 1
Polysemic 26 2,246 42,059 3.31

All 39 3,108 56,530 2.54

Table 1: The word sense induction dataset statistics.

4. Methodology
4.1 Transformer model training

In our experiments we test three distinct transformer-based language models trained on
the Buddhist Sanskrit corpus described in Lugli et al. (2022). Namely, we trained two
versions of the BERT model (Devlin et al., 2019), i.e. a “BERT base” model with 12
encoder layers, a hidden size of 768 and 12 self-attention heads, and a “BERT small”
model with 8 encoder layers, a hidden size of 768 and 8 self-attention heads. Additionally,
we also trained a smaller version of the GPT-2 model (Radford et al., 2019) with 8 encoder
layers, a hidden size of 256 and 8 self-attention heads3.

The main reason for testing of smaller models with less parameters are the overfitting
issues reported in the studies by Sandhan et al. (2021) and Lugli et al. (2022), when large
language models are pretrained on corpora that are magnitudes smaller than the e.g.,
English corpora on which these models were trained originally. In the study by Sandhan
et al. (2021), where they trained a general Sanskrit model, they decided to tackle the
overfitting issue by training a lighter version of BERT (a so-called ALBERT model (Lan
et al., 2019)), which is a strategy that we also employ in this work in order to assess if
possible improvements in performance can be obtained by employing a smaller model.

In our previous study (Lugli et al., 2022), where we tested several contextual embeddings
models on the Buddhist Sanskrit corpus, we reported serious overfitting issues with a
GPT-2 model4, a model almost 10 times larger than the base version of BERT in terms of
number of parameters, which resulted in very low embedding quality. For this reason, in
this study we do not conduct experiments with a GPT-2 model of original size, but rather
just test a much smaller version, which did not overfit on the small pretraining corpus.5

For language model pretraining (employing the masked language modeling objective for
BERT models and autoregressive language modeling for GPT-2), we follow the regime
proposed in Lugli et al. (2022). We pretrain both contextual models on the general Sanskrit
corpus described in Lugli et al. (2022) for up to 200 epochs, and then on the Buddhist
corpus, again for up to 200 epochs. The reason for pretraining on the general Sanskrit
corpus is a considerable overlap in the vocabulary and grammar of general and Buddhist
Sanskrit, which we believe the models might be able to leverage and learn some useful
lexical, semantic, and grammatical information, and therefore compensate for the relatively
small size of the Buddhist corpus. Same as in Lugli et al. (2022), we preprocess the corpus
with the compound splitter proposed in Hellwig & Nehrdich (2018) to obtain word tokens.

3 All these models are monolingual and were trained only on Sanskrit data.
4 https://huggingface.co/docs/transformers/model_doc/gpt2
5 The final model’s size was determined by gradually reducing the number of encoder layers, attention

heads and the embedding size until the overfitting problem has been overcome, i.e. until the perplexities
the models have achieved on the train and test set were comparable.
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The pretrained models are fine-tuned on a binary classification task of predicting whether
the same lemma in two distinct sentences has the same sense. More specifically, for each
lemma in the WSI dataset presented in Section 3, we define a set of its example sentences
as Li and build a binary classification dataset consisting of lemma sentence pairs that we
obtain as a Cartesian product of Li with itself. Note that we remove sentence pairs in
which the first sentence is the same as the second sentence. We define the final dataset
D as a union of sentence pairs Li consisting of sentences s1 and s2 containing the same
target lemma. More formally, D is defined with the following equation:

D =
n€

i=1
(Li ◊ Li|(s1 œ Li) ”= (s2 œ Li))

For each sentence pair in the dataset D, we label whether the lemmas in it have the same
sense or not. This dataset is used for fine-tuning and evaluation of language models.

4.2 Clustering examples into senses

The binary predictions produced by the models are used for clustering of lemma sentence
examples into distinct lemma senses. We build one graph G = (V, E) per lemma, comprised
of a set of vertices V representing lemma sentence examples, and a set of edges E ™ V ◊V ,
which are ordered pairs, representing connections between vertices. Vertices in the graph
are connected if they contain lemma with the same sense. This allows us to build a
(0,1)-adjacency matrix for each lemma, in which ones indicate whether pairs of vertices (in
our case sentences) are adjacent (i.e., contain lemmas with the same sense) in the graph.

The resulting adjacency matrix is used for clustering of vertices (i.e. sentence examples
containing the same target lemma) into sense clusters using a novel clustering solution, in
which the rows of the matrix are used for construction of initial clusters. More specifically,
in the first step, we create a different cluster containing the target vertice and its adjacent
sentences for each example, resulting in n initial clusters, where n is a number of vertices
in the graph. To obtain the final clusters, these initial clusters are merged by recursively
combining the clusters with the largest intersection up to a predefined threshold of minimum
intersection or maximum number of clusters. The threshold for minimum intersection was
experimentally set to 0.8 and maximum number of clusters was set to 10, i.e., the merging
of clusters with the largest intersection continues until at most 10 distinct clusters remain.
The threshold of 10 was set due to the observation that very few lemmas in Buddhist
Sanskrit have more than 10 distinct main senses. Note that due to a large variability in
cluster sizes, the merging of clusters is based on normalized intersection that also takes
into the account the number of vertices in the two clusters we potentially wish to merge.
More specifically, the intersection I between two sets (clusters) of vertices Si and Sk is
normalized by dividing it with the size of the smaller cluster:

I = Si fl Sk/min(|Si|, |Sk|) (1)

The final step in the proposed clustering solution is to remove duplicate vertices, which
appear in more than one cluster. Here we opted for a simple solution, which proved
experimentally effective, and remove all duplicates but the one in the largest cluster. The
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logic behind this strategy relies on a simple probability estimate that these outlier vertices,
which do not fit neatly in a single cluster, have the greatest probability of belonging to
the biggest cluster in a clustering.

5. Experimental setup
5.1 Evaluation scenarios

The obtained clusters, representing sense distributions for each lemma, are evaluated in two
5-fold cross-validation (CV) scenarios. All pretrained models are fine-tuned for 5 epochs
on the binary classification task described in Section 4 for each fold in the cross-validation
evaluation. We evaluate the performance of the models on the binary classification task
using two measures, accuracy and macro-averaged F1-score. The latter was chosen in
addition to accuracy due to unbalance between the two classes in the language model’s
test set.

In the first scenario, we test how well do the obtained clusters represent the true sense
distribution of new unseen (polysemous and monosemous) lemmas not used for model
training. In this scenario, we maintain a strict division between lemmas in the models’
train set and lemmas in models’ test set. We do not remove monosemous lemmas from the
test set, in order to simulate a real life scenario of employing the model on new lemmas
with unknown number of senses. We call this the “lemma division” setting. In the second
scenario, we test how well do the clusters represent the true lemma sense distribution
when classifier is tested on new unseen sentence examples for polysemous lemmas used for
model training. Here, there is no division between lemmas in the train and test set, just a
division between train and test set lemma sentence examples, since we wish to simulate
a real life scenario of employing the model on new unlabeled occurrences of lemmas on
which the model was trained, with known number of senses. In this scenario, we remove
the monosemous lemmas from the test set, since sense induction on these lemmas is trivial
for the models. We call this the “no lemma division” setting.

Note that in both scenarios the obtained train sets in the 5-fold CV evaluation are balanced,
i.e., the number of sentence pairs with the same target lemma sense and the number of
sentence pairs with the different target lemma sense are balanced by downsampling the
majority class for each lemma. This also means that in both scenarios the models are only
trained on the polysemous lemmas. On the other hand, we do not balance the test sets.

5.2 Baselines

The proposed approach is compared to three distinct baselines. To compare the novel
clustering solution to a more commonly used graph-based clustering algorithm, we once
again use binary predictions produced by the transformer models to build a graph G =
(V, E) for each lemma, comprised of a set of vertices V representing lemma sentence
examples, and a set of edges E ™ V ◊ V . Two vertices (i.e. sentences) in the graph are
again connected if they contain lemmas with the same sense. We fed the constructed
graph to the popular Louvain clustering algorithm (Que et al., 2015) to obtain the final
sense clusters.

The second baseline we apply only in the “no lemma division” scenario was inspired by
the Lesk dictionary-based algorithm for word sense disambiguation (Lesk, 1986). More
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specifically, a sentence containing a target lemma for which we wish to determine a sense, is
considered as a bag of words (BOW). We calculate normalized intersection (see equation 1)
between the set of words in the new sentence in the test set and all the sentences containing
the same target lemma in the train set. The lemma in the test set sentence is assigned
the sense of the target lemma in the train set sentence with the largest intersection. Note
that this approach is only feasible in the “no lemma division scenario” and can only be
employed for disambiguation of lemmas for which a set of labeled sentences already exists.
We call this the “BOW intersection” approach.

The third baseline is an approach for large-scale word-sense induction by Eyal et al. (2022)
described in Section 2. We re-implemented the approach from the original work but
omitted the building of the inverted word index which was used to conserve space. Since
in our experiment the dataset is several orders smaller in size, this step was unnecessary
for our purpose. In our case, we generate the substitutes with a pretrained Buddhist
Sanskrit ”BERT base” language model. In each sentence, we mask the target word w
and we generate the probability distribution across all the tokens in the vocabulary with
the language model. We then take the k most probable tokens and treat them as the
substitutes for the word w. This way we leverage the context in trying to induce senses
for the target word. In our experiment we set the k to 20 experimentally.

For forming sense clusters, we first build a graph with substitutes as nodes where two
nodes are connected if they represent substitutes that were being generated for the same
word. We then cluster this graph using the Louvain clustering algorithm. The resulting
clusters represent sense clusters. Using the Louvain algorithm allows us to not set the
number of clusters prior to clustering but induce the number of clusters automatically
from the data. This makes this method completely unsupervised as no sense labels nor the
number of clusters for target words are needed to be known in advance. For this reason,
we use it as a baseline in the “lemma division” setting.

5.3 Evaluation measures

We employ two distinct measures for evaluation of the clustering algorithm, Adjusted
Rand Index (ARI) score (Hubert & Arabie, 1985) and an F1-score (Manandhar et al.,
2010).

The F1-score measure for evaluation of word sense induction was first proposed in the
Semeval-2010 task 14: Word sense induction and disambiguation (Manandhar et al., 2010)
and was motivated by a similar evaluation measure used for information retrieval. The
F-Score of a gold standard sense gsi (denoted as F (gsi) in the equation below), is the
maximum F (gsi, cj) value attained at any cluster, where the F1-score of gsi with respect
to cj, F (gsi, cj), is defined as the harmonic mean of precision of class gsi with respect
to cluster cj and recall of class gsi with respect to cluster cj. The F1-score of the entire
clustering solution is finally defined as the weighted average of the F1-scores of each gold
standard sense , where q is the number of gold standard senses and N is the total number
of sentence examples for a specific lemma. More formally, the score is defined with the
following equation:

F1 ≠ score =
qÿ

i=1

|gsi|
N

F (gsi)
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The main advantage of the F1-score evaluation is that it penalises systems that produce
higher number of clusters (low recall) or lower number of clusters (low precision) than the
gold standard number of senses. On the other hand, F1-score suffers from the matching
problem, which results in the score not being able to evaluate the entire membership of
a cluster, or by not evaluating every cluster (Rosenberg & Hirschberg, 2007), especially
when gold standard distribution is very unbalanced. In this case, the F1-score tends to
not consider the make-up of the clusters beyond the majority class.

For this reason, we employ an additional evaluation measure, ARI, which does not suffer
from the matching problem, is equal to zero in the cases of trivial clustering, such as
random clustering, or when the model produces a separate cluster for each context or
a single cluster for all contexts, even in the case of uneven gold standard distribution.
The measure was used for evaluation of WSI in several shared tasks (Navigli & Vannella,
2013; Panchenko et al., 2018). We adopt the ARI implementation from the scikit-learn
library6, which produces scores between 1 (when the clusterings are identical) and -0.5 (for
especially discordant clusterings). ARI is based on the Rand Index (RI), which calculates
a similarity score between two clusterings by looking at all pairs of samples and then
counting pairs that are assigned in the same or different clusters in the predicted and gold
standard clusterings.

ARI is calculated by adjusting the Rand Index for chance using the following equation:

ARI = RI ≠ Expected_RI

max(RI) ≠ Expected_RI

Both measures, F1-score and ARI, are calculated for each lemma. We obtain an overall
score for a cross-validation fold by averaging the lemma scores. Finally, we average the
scores across five cross-validation folds to obtain the overall cross validation scores. We
also report the standard deviation of fold scores for both measures.

6. Results

The results the different language models achieve on the binary classification task of
predicting whether the two lemmas have the same sense or not are presented in Table
2. According to both evaluation criteria, macro-averaged F1-score and accuracy, the
best performing model in the “no lemma division” setting is GPT-2 small, achieving an
F1-score of 69.33% and an accuracy of 72.09%. In the “lemma division” scenario, the
best performing model is BERT base with an F1-score of 57.21% and an accuracy of
60.44%. The performances of all models in both scenarios are nevertheless comparable
and standard deviation intervals intersect.

The results of different clustering solutions are presented in Table 3. In the “no lemma
division” scenario, the best solution in terms of ARI is employing the novel clustering
solution (in the Table 3 labeled as “custom clustering”) on binary predictions generated
by the BERT base model, with an ARI score of 0.3. While using the combination of the
GPT-2 small model (which achieved the best macro-averaged F1-score and accuracy in
the binary classification task) and the novel clustering solution also produces competitive

6 https://scikit-learn.org/stable/modules/generated/sklearn.metrics.adjusted_rand_score.html
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Model F1 Macro F1 Macro STD Accuracy Accuracy STD
No lemma division

BERT base 67.94 2.97 69.23 3.37
BERT small 67.25 1.81 69.06 2.19
GPT-2 small 69.33 1.02 72.09 1.19

Lemma division
BERT base 57.21 5.55 60.44 6.21
BERT small 56.47 3.44 60.09 4.93
GPT-2 small 55.20 3.17 59.71 5.85

Table 2: The results of different language models on the binary classification task.

Approach ARI ARI STD F1 F1 STD
No lemma division

BERT base + Custom clustering 0.300 0.034 76.10 0.58
BERT small + Custom clustering 0.217 0.041 73.96 1.58
GPT-2 small + Custom clustering 0.286 0.035 75.74 0.65

BERT base + Louvain 0.271 0.039 73.60 1.24
BERT small + Louvain 0.205 0.048 70.84 2.25
GPT-2 small + Louvain 0.258 0.043 74.28 2.13

BOW intersection 0.254 0.042 76.78 1.68
Lemma division

BERT base + Custom clustering 0.099 0.026 79.78 4.56
BERT small + Custom clustering 0.116 0.029 79.94 4.38
GPT-2 small + Custom clustering 0.208 0.159 80.36 4.03

BERT base + Louvain 0.041 0.026 61.58 2.37
BERT small + Louvain 0.055 0.022 65.04 4.66
GPT-2 small + Louvain 0.023 0.022 69.14 2.56

Eyal et al. (2022) 0.024 0.010 35.50 1.10

Table 3: The results of different clustering solutions.

results in terms of ARI, employing the novel clustering solution on binary predictions
produced by the BERT small model surprisingly leads to a much worse performance
in terms of ARI. This finding is interesting since all the models achieved comparable
performance on the binary classification task, therefore we expected that the clustering
results would also be competitive. Using the Louvain clustering, we achieve lower ARI
and F1-scores than using the custom clustering no matter the model we use for binary
predictions. Again, employing the Louvain algorithm on binary predictions produced by
the BERT small model leads to much worse results in terms of ARI than if two other
models are used.

In terms of the F1-score, the non-neural BOW intersection baseline achieves the best
performance of 76,78%. Using the combination of BERT base or GPT-2 small and custom
clustering is also a competitive strategy, leading to F1-scores around 76%. We believe that
the best performance of the BOW intersection baseline in terms of F1-score is to some
extent caused by the unbalanced distribution of senses in the gold standard distribution
and the fact that the F1-score tends to not consider the make-up of the clusters beyond
the majority class due to the matching problem. Nevertheless, since the BOW intersection
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Lemma Key Word in Context (KWIC) Translation Sense Assigned cluster

nāman
niṣikte <b>nām</b>a rūpe tu ṣaḍ
āyatana saṃbhavaḥ / ṣaḍ āyatanam

āgamya saṃsparśaḥ saṃpravartate //

When name and form develop, the six
senses emerge. In dependence upon the six
senses, impact actually occurs. [Batchelor]

nāma-rūpa (one of the twelve nidānas) 1

nāman

[…] yad idam a vidyā
pratyayāḥ saṃskārāḥ saṃskāra pratyayaṃ vijñānaṃ

vijñāna pratyayaṃ <b>nām</b>a rūpaṃ nāma
rūpa pratyayaṃ […]

translation not available nāma-rūpa (one of the twelve nidānas) 2

nāman tadyathāpi <b>nām</b>a subhūte ratn ārthikaḥ
puruṣo mahāsamudraṃ dṛṣṭvā n āvagāheta /

Just as if a person who desires
jewels would not look for them in
the great ocean, [...]. [Conze 235]

namely 3

nāman

bhoḥ puruṣa kas tav āsyāṃ
upary anunayo yan <b>nām</b>a madīyām

ājñāṃ vilaṅghya n ecchasy enāṃ
praghātayituṃ […]

Man! What regard do you have for
her that, violating my order, you do

not wish to kill her? [Rajapatirana 19]
namely 3

nāman tadyathāpi <b>nām</b>a ānanda rājā cakravartīṃ
prāsādāt prāsādaṃ saṃkrāmet /

A universal monarch can pass from palace
to palace, [...]. [Conze 366]

namely 3

nāman tasya parama siddha yātratvāt supāraga
ity eva <b>nām</b>a babhūva /

His voyages proved so extremely successful that
he came to be called Supāraga. [Khoroche

96]
name/word 4

nāman
asyām ānanda mathurāyāṃ mama varṣa

śata parinirvṛtasya gupto <b>nām</b>a gāndhiko
bhaviṣyati /

Ananda, right here in Mathurā, one hundred
years after my parinirvāṇa, there will be
a perfumer named Gupta. [Strong 174]

name/word 4

nāman tasya vistareṇa jātimahaṃ kṛtvā pṛcchati
kiṃ kumārasya bhavatu <b>nām</b>a /

When the prince’s full birth festival was
being celebrated, she was asked what his

name should be. [Strong 205]
name/word 4

nāman paśy ājit aika sattvam api
<b>nām</b> otsāhayitv eyat puṇyaṃ prasavati /

Mark, Agita, how much good is produced
by one’s inciting were it but a

single creature; [Kern 333]
indeed/really/actually 4

nāman
arthibhiḥ prīta hṛdayaiḥ kīrtyamānam itas

tataḥ / tyāga śaury onnataṃ
<b>nām</b>a tasya vyāpa diśo daśa //

“[1] His petitioners were well-contented and praised
him far and wide, so that the

name he earned for his largesse spread
to every corner of the earth. [Khoroche

22]

name/word 4

Table 4: Word sense induction examples in the “no lemma division” setting for lemma
nāman with four distinct labeled senses, when BERT base and custom clustering is
employed. In KWIC examples, <b> and </b> tags are used for denoting the target
lemma and / (daṇḍa) for punctuation.

baseline also offers solid performance in terms of ARI (0.254), and since it does not require
any additional cluster mapping7, this approach seems like a viable option, especially since
it is extremely fast and requires very few computational resources.

In the “lemma division” setting, the usage of custom clustering tends to outperform all the
baseline approaches by a large margin according to both evaluation criteria. By far the
best ARI score of 0.208 is achieved if we use custom clustering on the binary predictions
produced by the GPT-2 small model. In this setting, the standard deviation between folds
in the 5 fold CV setting is nevertheless very large, 0.159. In fact, the ARI score across
folds varied between 0.477 and 0.029, which means that the score very much depends on
which lemmas are in the train set, when GPT-2 small model is used for production of
binary predictions. This indicates that the model might have issues finding general rules
that can be applied for sense disambiguation on different lemmas and rather relies on a
set of features that only work for some lemmas.

7 While the BOW intersection baseline works as a word sense disambiguation approach by assigning
target lemmas in new sentences predefined senses, the other approaches work as word sense induction
strategies, producing clustering distributions without labeled clusters. While the latter approaches are
useful if all word senses for a specific target lemma are not known in advance, an additional cluster
mapping step, in which the produced unlabeled clusters are mapped to the actual lemma senses is
nevertheless required in order to obtain actual senses.
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The usage of BERT base or BERT small models leads to more consistent ARI scores across
different folds of around 0.1. This means that there is a substantial drop in terms of ARI,
if we compare the “lemma division” approach to the “no lemma division” approach, which
suggests that all transformer models (not just the GPT-2 small model) have issues in
finding general rules that can be applied for sense disambiguation on different lemmas.
Most likely this is due to the limited size of the fine-tuning dataset, which only contains
39 different lemmas.

In terms of the F1-score, all approaches based on custom clustering achieve comparable
and very competitive scores around 80%. Again, we believe that this is partially caused
by the matching problem of the evaluation score and unbalanced distribution of senses in
the gold standard distribution.

Examples of word sense induction for lemma nāman in the “no lemma division” setting
when BERT base and custom clustering is employed are presented in Table 4. Note how the
sentence examples containing lemmas with majority senses (“namely” and “name/word”)
tend to be clustered correctly, while the clustering perform worse for examples containing
lemmas with minority senses (“indeed/really/actually” and “nāma-rūpa (one of the twelve
nidānas)”).

7. Conclusion

In the paper, we released the first word sense induction dataset and proposed the first
WSI approach employed for Buddhist Sanskrit, with an intention to automate the time
and labor intensive lexicographic task of assigning senses to target lemmas in sentences.
The approach relies on pretrained transformer language models fine-tuned on a binary
classification task of predicting whether two identical target lemmas in two sentences have
the same sense or not. The produced predictions are then used in a novel graph-based
clustering solution.

While the proposed approach outperforms several WSI baselines in terms of ARI, we do
observe several potential problems with the method, which will need to be thoroughly
addressed before it can be fully integrated in a lexicographic pipeline for Buddhist Sanskrit.
First, the large difference in performance between the two tested approaches, the “lemma
division” approach and the “no lemma division” approach, indicates that transformer
models tend to rely on lemma specific features during binary classification and fail to find
general contextual features to distinguish between senses. Another indication of that is
the standard deviation between folds in the 5 fold CV setting in the “lemma division”
setting, when the best performing GPT-2 small model is used. The latter suggests that
the selection of lemmas, on which the model is trained, is important. We believe that
both of these problems could be resolved by a larger training dataset in terms of both
sentence examples for a specific lemma and number of different lemmas in the dataset.
The construction of such bigger training dataset will be the object of future work, but it
seems likely that only the number of different lemmas included in the data will increase
substantially, as lexicographers will in any case progressively annotate sentences for more
lemma as they expand the dictionary. By contrast, expanding the number of sentences
annotated for each lemma may prove difficult to align with lexicographic goals, since
manual annotation is extremely laborious and WSI is needed to reduce the amount of
manual annotation required for dictionary development.
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When it comes to the evaluation scores, we believe that the F1-score is not appropriate
for evaluation in our setting, because the unbalanced classes resulting from the above-
mentioned matching problem interfere with the score’s ability to evaluate entire membership
of the cluster, especially in scenarios where a prevailing gold standard majority cluster
is accompanied by several smaller clusters. Since the score is calculated as the weighted
average of the F1-scores of each gold standard cluster, in such scenarios the memberships
of smaller clusters are neglected due to relatively small weights. In our case, this leads
to a relatively small differences between different approaches in terms of F1-score (this
was especially the case in the “no lemma division” scenario), since all approaches were
able to assign membership to a majority cluster to a reasonably good degree, since this is
the easiest part of the task. On the other hand, there were significant differences between
different approaches when it comes to successfully assigning membership to minority
clusters, and these were not captured by the F1-score. While the ARI score tends to do
better in this respect, we will nevertheless explore other evaluation scores in future work,
in order to try to improve our evaluation scenario even further.
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