
The Kosh Suite: A Framework for Searching and

Retrieving Lexical Data Using APIs

Francisco Mondaca1, Philip Schildkamp1, Felix Rau2, Luke
Günther1

1 Cologne Center for eHumanities, University of Cologne
2 Data Center for the Humanities, University of Cologne

E-mail: f.mondaca@uni-koeln.de, philip.schildkamp@uni-koeln.de, f.rau@uni-koeln.de,
luke.guenther@uni-koeln.de

Abstract

This paper presents the Kosh Suite, an API-centric framework designed to efficiently
manage and access lexical data. The Kosh Suite aims to address the challenges in
working with XML and lexical data, providing a flexible and customizable solution. The
Kosh Suite architecture features a backend powered by Elasticsearch, which forms the
foundation for efficient data management and retrieval. This backend offers two APIs per
dataset for accessing the lexical data - a REST API and a GraphQL API per dataset.
In addition, the Kosh Suite includes a frontend implemented in form of a React-based
user interface, ensuring a user-friendly experience and adaptability to various use cases.
Deployment specifications are described for the backend, with reference implementations
for FreeDict and Cologne Sanskrit Dictionaries (CDSD). Future enhancements include
asynchronous request handling using FastAPI, integration with CSV files, and leveraging
advancements in large language models (LLMs). These improvements have the potential to
significantly enhance the system’s performance and accessibility, promoting the integration
of underrepresented languages into mainstream LLMs.

Keywords: api;rest;graphql;xml;elastic

1. Introduction
1.1 An API-Centric Framework for Lexical Data

Application Programming Interfaces (APIs) play a crucial role in enabling efficient data
exchange and remote functionality invocation among distributed applications. APIs,
through their well-documented, stable, and user-friendly services, present a sustainable
alternative to both monolithic web applications, which frequently pose maintenance
challenges, and data repositories, which necessitate computational processing for effective
use. According to Amundsen (2020) APIs reduce computational time and cost, facilitate
easier computations, and tackle previously unresolved issues. Importantly, APIs are
intended not only for application integration but also for human interaction. As such,
recognizing the target consumer and use case is of utmost importance. APIs accommodate
a wide array of devices and software stacks, including Java-enabled smartphone applications
and Python-based desktop programs. As a result, development efforts concentrate on the
data output and functionality of the API. This emphasis indirectly boosts the sustainability
of the underlying system supporting the API, as the computations take place within this
system rather than prioritizing data presentation. In case of system errors, all consumers
are affected, highlighting the necessity for a robust and dependable API infrastructure.

236



As of Kosh’s1 initial development (Mondaca et al., 2019b), and persisting until now, no
frameworks have been exclusively dedicated to APIs for lexical data. Lexical data, with its
inherent adaptability, can be applied in single-page dictionary applications, incorporated
into corpora, and utilized in diverse NLP tasks. While alternative tools, such as Lexonomy
(Měchura, 2017), permit users to create and publish dictionaries that can be integrated
into the CLARIN network or have their data downloaded in XML format, these tools
lack web API offerings. Despite the growing importance and application of APIs in the
industry (Medjaoui et al., 2021), such focus has not yet been reflected in the academic
advancements within the field of lexicography.

1.2 Background on XML and Lexical Data

XML (eXtensible Markup Language) is a popular serialization format for lexical data. The
hierarchical and structured format of XML allows lexicographers to represent complex
linguistic data in a clear and organized way, thus facilitating easier processing, query, and
share between different systems and applications. In addition, the standardization of XML
as a widely adopted format for data serialization lead to many tools and libraries being
available for parsing and processing XML data, making it a reliable and well-supported
choice for lexicographers. The extensibility of XML also makes it a beneficial choice for
digital lexicography, as it enables lexicographers to customize lexical data structures to
meet the specific needs of a given project. This allows for the creation of specialized
lexicons and dictionaries that cater to specific domains or user groups, and can be used in
a variety of contexts, such as natural language processing and machine translation. The
development of the TEI (Text Enconding Initiative) has been a relevant endeavor in the
digital humanities, as it provides a flexible model that can cover multiple needs of different
communities working with digital data. However, the flexibility of the TEI Guidelines (TEI
Consortium, 2023) for encoding dictionaries often results in inconsistent encoding, which
hinders the processing, analysis, and sharing of lexical data across systems and applications.
To address this challenge, TEI Lex-0 (Tasovac et al., 2018) was created to establish a
standardized and interoperable format for encoding lexical data within a community
of practice. TEI Lex-0 offers a baseline encoding and target format that ensures the
interoperability of heterogeneously encoded lexical resources, providing a lightweight and
standardized format for creating structured and machine-readable lexical resources. This
makes it easy for lexicographers to use and adopt while still adhering to a consistent model
for searching, visualizing, or enriching multiple lexical resources. The use of TEI Lex-0
enables the building and management of large-scale lexical infrastructures by facilitating
the creation of high-quality and interoperable lexical resources that can be easily processed,
analyzed, and shared across different systems and applications. XML-encoded lexical
datasets are commonly used due to their flexibility, hierarchical structure, cross-platform
compatibility, standardization, and extensibility. While TEI-encoded dictionaries are a
relevant part of the digital lexicography scholarly landscape, there are also many other types
of XML-encoded dictionaries used in academia and industrial contexts. These dictionaries
can have a wide range of structures, and searchable fields can vary greatly between them.
By initially focusing solely on XML as an input format, we could concentrate on designing
a straightforward and efficient framework. Although data in other formats must be
converted into XML to be used by Kosh, multiple tools are available for accomplishing
this transformation.

1 https://kosh.uni-koeln.de

237

https://kosh.uni-koeln.de


1.3 Motivation for the Kosh Suite

Since its inception in 2019, Kosh has been employed in various research and community
projects, including the Cologne Digital Sanskrit Dictionaries (2019), VedaWeb (Kiss et al.,
2019), Zoroastrian Middle Persian Corpus and Dictionary (MPCD) (Mondaca et al., 2022),
and FreeDict2. The VedaWeb project was the first to employ Kosh, linking every token
of the RigVeda to a lemma of Grassman’s dictionary (Grassmann, 1873) through a Kosh
API and its corresponding information (Mondaca et al., 2019a). The primary impetus
behind Kosh’s development was to foster the decentralization and increased utilization
of lexical data pertaining to datasets that are typically underrepresented in the digital
realm for various reasons. Although APIs enable developers and researchers to craft
bespoke applications that harness these APIs, it has been observed that numerous scholars
possessing XML-encoded lexical data often lack the necessary resources to devise user-
centric client applications tailored for data exploration and retrieval. To address this issue,
we have developed a client application as part of the Kosh Suite, which consumes and
visualizes data provided by the Kosh APIs, thus enabling users to search through the data.
By providing a user-friendly interface for accessing data, we aim to make consuming and
serving XML-encoded lexical data more accessible to researchers and scholars who may
not have the resources or expertise to develop their own applications for using the Kosh
APIs.

2. Architecture
2.1 Overview

The Kosh Suite is a comprehensive software framework designed to manage and access
lexical data in XML format. The structured nature of XML, facilitated by the use of
tags, allows for easy identification and navigation of different elements of the data. The
framework relies on Elasticsearch, a search engine that can be used to index lexical data,
making it easily searchable. Kosh provides two APIs per dataset: a REST (Representational
State Transfer) API (Fielding, 2000) and a GraphQL API (GraphQL, 2021). The REST
API allows for read operations on the indexed data and is easy to use with a wide range
of programming languages and frameworks. The GraphQL API allows clients to request
exactly the data they need and retrieve multiple resources in a single request. Using these
APIs, the Kosh frontend offers a user-friendly interface for searching and filtering the
indexed data. The Kosh Suite’s frontend is developed using React3 and Tailwind CSS4,
offering a web-based user interface to search through the lexical data provided by the Kosh
APIs. Users have the ability to perform complex searches, filter results based on various
criteria, and view detailed information about the lexical entries. Additionally, users have
the option to configure the fields they wish to search on through a JSON file, ensuring
that the indexed data remains easily searchable.

2 https://freedict.org/
3 https://react.dev
4 https://tailwindcss.com

238

https://freedict.org
https://react.dev
https://tailwindcss.com


2.2 Backend

2.2.1 Elasticsearch

Elasticsearch5 is an open-source distributed search engine that is specifically designed to
handle large datasets with high performance and scalability. It offers advanced features
such as full-text search, faceting, and geospatial search, which make it a popular choice
for indexing and searching large datasets. Elasticsearch is built on top of Apache Lucene6,
a powerful and widely used search library that provides advanced search capabilities. The
Elasticsearch platform is broadly used in various applications, including digital lexicography,
due to its ability to handle large datasets in near real-time. The full-text search capabilities
of Elasticsearch enable users to search for relevant data using natural language queries,
making it an ideal choice for indexing and searching textual data. In the context of the
Kosh Suite, Elasticsearch serves as the backend for indexing and searching lexical data
in XML format. The system’s ability to index large amounts of data quickly is crucial
for digital lexicography, which often deals with massive datasets. Elasticsearch’s full-text
search capabilities and real-time search enable complex searches and filtering based on
multiple criteria. Additionally, Elasticsearch’s distributed architecture facilitates easy
scaling of the system, enabling high availability and fault tolerance. The system can
be deployed across multiple nodes, providing redundancy and load balancing, making it
suitable for large-scale projects. Elasticsearch also offers APIs, making it easy to integrate
with other systems and applications, enhancing its flexibility and versatility.

2.2.2 REST API

A REST API is an interfacing standard for creating web services that enables commu-
nication between different systems. It follows a client-server architecture and allows for
read and write operations on the indexed data, making it easy to use with a wide range of
programming languages and frameworks. In the context of the Kosh Suite, the REST API
enables read-only access to the indexed lexical data in XML format. Kosh only accepts
HTTP GET requests on the REST API, as it is used for reading the indexed data. Users
can perform complex searches and filter results based on various criteria using the REST
API. It is designed to be easily integrated with other systems and applications, further
enhancing its versatility. OpenAPI7 provides a user-friendly interface for developers to
interact with the Kosh APIs. It offers a visual representation of the API’s endpoints and
parameters, making it easier to understand how to use the API. Additionally, OpenAPI
offers interactive documentation, allowing developers to test the API’s endpoints and view
the results in real-time. This feature saves time and improves efficiency as it eliminates
the need to manually test each endpoint using external tools.

2.2.3 GraphQL API

GraphQL is a query language that provides a more flexible approach to retrieving data
compared to traditional REST APIs. One of the key benefits of GraphQL for managing
lexical data in Kosh is its ability to allow clients to request only the data they need. This

5 https://www.elastic.co/elasticsearch/
6 https://lucene.apache.org
7 https://www.openapis.org

239

https://www.elastic.co/elasticsearch/
https://lucene.apache.org
https://www.openapis.org


means that clients can retrieve precisely the data they require without being limited by
the constraints of a fixed data structure. As a result, GraphQL provides greater flexibility
and reduces the amount of data that needs to be transferred over the network, which
can improve the efficiency of data retrieval. In the context of digital lexicography, this
flexibility is particularly valuable, as it allows lexicographers to create more complex data
structures without worrying about the impact on data retrieval performance. This can
enable the development of more advanced and customizable search interfaces for lexical
data. Additionally, the ability to perform nested queries enables clients to retrieve related
data in a single request, reducing the number of requests required to access all the necessary
data. The use of GraphQL in Kosh provides a powerful and flexible tool for managing
and retrieving lexical data.

2.3 Frontend

2.3.1 React-based User Interface

React is a widely-used and popular JavaScript library for building user interfaces (UIs).
Its component-based architecture enables high modularity and reusability in building UIs,
while its virtual DOM feature provides performance advantages by selectively updating
only the modified parts of the UI. Moreover, React boasts a vast ecosystem of libraries
and tools that facilitates rapid development of complex applications. When combined
with a GraphQL API, React offers various advantages that can enhance the performance
of web applications that manage large datasets, such as lexical data. By allowing clients
to request only the necessary data, GraphQL minimizes the volume of redundant data
transferred over the network, leading to faster data retrieval and improved application
performance. GraphQL’s capability to execute nested queries simplifies data fetching,
reducing the number of requests necessary to retrieve data. These benefits are especially
relevant when the network data is limited, as GraphQL streamlines data retrieval, resulting
in more efficient resource utilization, faster data loading times, and improved application
responsiveness. React’s component-based structure also promotes code efficiency and
reusability, supporting the development of scalable and efficient applications.

2.3.2 Tailwind CSS for UI-Customization

Tailwind CSS8 is a utility-first framework that offers more customization and flexibility
than alternatives like Bootstrap9 or Foundation10. Its low-level utility classes can be
composed to create unique designs, and it offers a vast collection of predefined classes for
easy modification. It also provides responsive design classes for optimization across screen
sizes and devices. In the Kosh Suite, Tailwind is used for frontend development, offering
advantages such as easy customization, and responsive design options. This ensures a
user-friendly interface that remains accessible and usable across devices and platforms
while giving developers greater control over design and layout.

8 https://tailwindcss.com
9 https://getbootstrap.com

10 https://get.foundation

240

https://tailwindcss.com
https://getbootstrap.com
https://get.foundation/


3. Deployment
3.1 Backend

Kosh is designed to offer minimal prerequisites and an uncomplicated setup. It can be
deployed on Linux systems or through Docker. For deployment, Kosh requires a Kosh
dotfile, a JSON file with mappings, and it processes files in XML format.

3.1.1 Kosh Dotfile

This file provides details on: (i) the name of the dataset’s index; (ii) the location of
XML files containing lexical information; (iii) the location of the configuration JSON file,
utilized for parsing and configuring Elasticsearch; (iv) the title of the dataset; (v) any
other, additional metadata, that should be made available through the Kosh API.

3.1.2 JSON Mappings

The JSON file referenced from within a Kosh dotfile contains information about XML
nodes and their subnodes, specified in XPath 1.0 notation, which is used for indexing. It
also includes details about handling different data types, such as “keyword” for unprocessed
strings and “text” for preprocessed strings analyzed by Elasticsearch. Additionally, the
file provides instructions on handling arrays of elements and automatically generating
entry IDs if not present in the dictionary. Lastly, it outlines the default indexing behavior,
which involves indexing the entire entry without analyzing XML tags.

3.1.3 Endpoints

Kosh offers a REST and a GraphQL API for each dataset indexed, and it also indicates in
JSON which datasets are accessible for each Kosh instance. Each dataset comprises: (i)
information about the queryable fields, such as “id”, “lemma”, and “sense”; (ii) available
Elasticsearch query types, like “wildcard” and “prefix”; (iii) the number of entries available.
This endpoint information holds computational significance, as it can be utilized by other
applications, including the Kosh Suite frontend. For instance, detailed information about
each dataset is accessible at https://kosh.uni-koeln.de/api for all datasets deployed under
a specific Kosh instance. Similarly, individual datasets also contain this information, as
seen in https://kosh.uni-koeln.de/api/de_alcedo.

3.2 Frontend

Analogous to the backend, the frontend is deployed with a Docker container. As illustrated
in Section 3.1.3 Endpoints, the frontend capitalizes on the information furnished by Kosh’s
backend to dynamically generate user interface components for the purpose of querying
and exhibiting data provided by the backend. This distinctive attribute permits Kosh to
accommodate a diverse range of datasets while simultaneously affording users the flexibility
to establish naming conventions, as they possess the freedom to determine field names in
the JSON file delivered to the backend.

241

https://kosh.uni-koeln.de/api
https://kosh.uni-koeln.de/api/de_alcedo


4. Reference Implementations
4.1 FreeDict

4.1.1 About FreeDict

The FreeDict project aims to serve as the preeminent repository for free bilingual dictio-
naries. These resources not only come at no cost but also confer the rights to examine,
modify, and adapt them, provided that users extend these liberties to others. Established
in 2000, FreeDict currently offers a compendium of more than 200 multilingual dictio-
naries, spanning approximately 45 languages, with its continuous growth thanks to the
contributions of its members.

4.1.2 FreeDict Implementation

Freedict hosts its hand-written dictionaries in TEI format on GitHub, while also provides
a comprehensive list of all its dictionaries in JSON format. There is a repository on
GitHub that generates the necessary data for Kosh, including Kosh dotfiles and JSON
files, to enable deployment11. The implementation of this repository facilitates continuous
monitoring of updates to the database, thereby ensuring synchronization between both
Kosh and the FreeDicts. Kosh APIs generated for FreeDict are available at: https:
//kosh.uni-koeln.de/freedict

4.2 Cologne Digital Sanskrit Dictionaries (CDSD)

4.2.1 About the CDSD

The Cologne Digital Sanskrit Dictionaries (CDSD) project began with the efforts of
Thomas Malten from the University of Cologne in 1994, initially focusing on digitizing the
Monier-Williams Sanskrit-English Dictionary (Monier-Williams, 1899). As of now, the
project boasts a collection of 38 dictionaries. The CDSD portal relies on data hosted on
GitHub12, where a diverse team of scholars and users from around the world work together
to maintain and improve the available information.

4.2.2 CDSD Implementation

The CDSD project initially utilized a unique markup language for encoding. Presently,
the dictionaries on the CDSD are derived from XML files that have been transformed
using various scripts, available on a GitHub repository13. We employ these repositories in
conjunction with a third one14 to generate the required JSON and Kosh dotfiles essential
for deploying these dictionaries with Kosh. Access to the Kosh CDSD APIs is available at:
https://kosh.uni-koeln.de/cdsd
11 https://github.com/freedict/fd-kosh
12 https://github.com/sanskrit-lexicon/csl-orig/tree/master/v02
13 https://github.com/sanskrit-lexicon/csl-pywork
14 https://github.com/cceh/csl-kosh

242

https://kosh.uni-koeln.de/freedict
https://kosh.uni-koeln.de/freedict
https://kosh.uni-koeln.de/cdsd
https://github.com/freedict/fd-kosh
https://github.com/sanskrit-lexicon/csl-orig/tree/master/v02
https://github.com/sanskrit-lexicon/csl-pywork
https://github.com/cceh/csl-kosh


5. Exploring Search Queries

In this section, we provide a variety of search examples that can be used with Kosh,
illustrating both GraphQL and REST queries. For GraphQL, the necessary parameters to
be inputted by the user for effective interaction with the GraphiQL interface are explicitly
provided.

1. Term: The term query finds documents that contain the exact term specified in
the field specified. Examples:

• RESTful: https://kosh.uni-koeln.de/api/de_alcedo/restful/entr
ies?field=lemma&query=santiago&query_type=term&size=20

• GraphQL: https://kosh.uni-koeln.de/api/de_alcedo/graphql
{

entries(queryType: term,
query: "santiago",
field: lemma,
size: 20) {
lemma
sense

}
}

2. Fuzzy: The fuzzy query generates all possible matching terms that are within a
certain maximum edit distance, allowing for variations in the terms. Examples:

• RESTful: https://kosh.uni-koeln.de/api/de_alcedo/restful/entr
ies?field=lemma&query=ica&query_type=fuzzy&size=50

• GraphQL: https://kosh.uni-koeln.de/api/de_alcedo/graphql
{
entries(queryType: fuzzy,
query: "ica",
field: lemma,
size: 50) {
lemma
sense

}
}

3. Match: The match query is a standard query that is useful for single word and
phrase queries. Examples:

• RESTful: https://kosh.uni-koeln.de/api/ducange/restful/entrie
s?field=xml&query=viispublicis&query_type=match&size=30

• GraphQL: https://kosh.uni-koeln.de/api/ducange/graphql
{
entries(queryType: match,
query: "viis publicis",
field: xml,
size: 30) {
lemma

243

https://kosh.uni-koeln.de/api/de_alcedo/restful/entries?field=lemma&query=santiago&query_type=term&size=20
https://kosh.uni-koeln.de/api/de_alcedo/restful/entries?field=lemma&query=santiago&query_type=term&size=20
https://kosh.uni-koeln.de/api/de_alcedo/graphql
https://kosh.uni-koeln.de/api/de_alcedo/restful/entries?field=lemma&query=ica&query_type=fuzzy&size=50
https://kosh.uni-koeln.de/api/de_alcedo/restful/entries?field=lemma&query=ica&query_type=fuzzy&size=50
https://kosh.uni-koeln.de/api/de_alcedo/graphql
https://kosh.uni-koeln.de/api/ducange/restful/entries?field=xml&query=viis%20publicis&query_type=match&size=30
https://kosh.uni-koeln.de/api/ducange/restful/entries?field=xml&query=viis%20publicis&query_type=match&size=30
https://kosh.uni-koeln.de/api/ducange/graphql


xml
}

}

4. Match Phrase: The match phrase query is like match, but it only returns documents
where the matched words are in the order specified in the query. Examples:

• RESTful: https://kosh.uni-koeln.de/api/de_alcedo/restful/entr
ies?field=sense&query=reynodechile&query_type=match_phrase&siz
e=300

• GraphQL: https://kosh.uni-koeln.de/api/de_alcedo/graphql
{
entries(queryType: match_phrase,
query: "reyno de chile",
field: sense,
size: 300) {
lemma
sense

}
}

5. Prefix: The prefix query matches documents where the value of the specified field
begins with that prefix. Examples:

• RESTful: https://kosh.uni-koeln.de/api/hoenig/restful/entries
?field=lemma_ksh&query=Hau&query_type=prefix&size=20

• GraphQL: https://kosh.uni-koeln.de/api/hoenig/graphql
{
entries(queryType: prefix,
query: "Hau",
field: lemma_ksh,
size: 20) {
lemmaKsh
translationDeu

}
}

6. Wildcard: The wildcard query matches documents where the specified field matches
a wildcard expression. Examples:

• RESTful: https://kosh.uni-koeln.de/api/ducange/restful/entrie
s?field=lemma&query=e*en&query_type=wildcard&size=50

• GraphQL: https://kosh.uni-koeln.de/api/ducange/graphql
{
entries(queryType: wildcard,
query: "e*en"
field: lemma,
size: 50) {
lemma

}
}

244

https://kosh.uni-koeln.de/api/de_alcedo/restful/entries?field=sense&query=reyno%20de%20chile&query_type=match_phrase&size=300
https://kosh.uni-koeln.de/api/de_alcedo/restful/entries?field=sense&query=reyno%20de%20chile&query_type=match_phrase&size=300
https://kosh.uni-koeln.de/api/de_alcedo/restful/entries?field=sense&query=reyno%20de%20chile&query_type=match_phrase&size=300
https://kosh.uni-koeln.de/api/de_alcedo/graphql
https://kosh.uni-koeln.de/api/hoenig/restful/entries?field=lemma_ksh&query=Hau&query_type=prefix&size=20
https://kosh.uni-koeln.de/api/hoenig/restful/entries?field=lemma_ksh&query=Hau&query_type=prefix&size=20
https://kosh.uni-koeln.de/api/hoenig/graphql
https://kosh.uni-koeln.de/api/ducange/restful/entries?field=lemma&query=e*en&query_type=wildcard&size=50
https://kosh.uni-koeln.de/api/ducange/restful/entries?field=lemma&query=e*en&query_type=wildcard&size=50
https://kosh.uni-koeln.de/api/ducange/graphql


7. Regexp: The regexp query matches documents where the specified field matches a
regular expression. Examples:

• RESTful: https://kosh.uni-koeln.de/api/tunico/restful/entries
?field=lemma&query=d.*m&query_type=regexp&size=50

• GraphQL: https://kosh.uni-koeln.de/api/tunico/graphql
{
entries(queryType: regexp,
query: "d.*m",
field: lemma,
size: 50) {
lemma
transEn

}
}

6. Future Directions and Enhancements
6.1 Backend

6.1.1 Asynchronous Request Handling

Our objective is to improve Kosh by integrating asynchronous capabilities. To accomplish
this, we will migrate from the existing web framework, Flask15, to FastAPI16. FastAPI is
an asynchronous web framework that delivers a notable performance boost. It inherently
supports REST and accommodates GraphQL through the Strawberry17 library. Moreover,
we intend to introduce asynchronous queries in Elasticsearch and implement nested fields.
The nested field type, a specialized version of the object data type, enables the indexing
of object arrays in a manner that allows them to be queried separately from one another.
These changes are anticipated to significantly enhance the system’s overall performance
and usability.

6.1.2 Integration with CSV Files

Drawing upon our expertise in the Zoroastrian Middle Persian Corpus and Dictionary
(MPCD) project, as well as collaborations with other scholars, it has been observed that
numerous researchers maintain their lexical data utilizing CSV files. While it is feasible to
convert this data into XML format, this task imposes additional workload. Consequently,
we endeavor to develop a methodology for directly incorporating data from spreadsheets
into Kosh.

6.1.3 Integration with Large Language Models

Recent advancements in the field of large language models (LLMs) present a promising
landscape for APIs handling natural language processing data in the upcoming future. The
15 https://flask.palletsprojects.com/en/2.2.x
16 https://fastapi.tiangolo.com
17 https://strawberry.rocks/docs/integrations/fastapi

245

https://kosh.uni-koeln.de/api/tunico/restful/entries?field=lemma&query=d.*m&query_type=regexp&size=50
https://kosh.uni-koeln.de/api/tunico/restful/entries?field=lemma&query=d.*m&query_type=regexp&size=50
https://kosh.uni-koeln.de/api/tunico/graphql
https://flask.palletsprojects.com/en/2.2.x
https://fastapi.tiangolo.com
https://strawberry.rocks/docs/integrations/fastapi


progress in this domain is unparalleled, given the rapidity and depth of the transformations
witnessed in recent months. Toolformer (Schick et al., 2023), a model designed to determine
which APIs to invoke, when to initiate them, which arguments to transmit, and how to
optimally integrate the outcomes into subsequent token predictions, operates in a self-
supervised manner, necessitating only a few demonstrations for each API. The researchers
trained a GPT-J model akin to GPT-3, albeit with significantly fewer parameters—6B
compared to 175B—and achieved comparable results to GPT-3 across various benchmarks.
Furthermore, OpenAI is incorporating external APIs into Chat-GPT, adhering to the
methodology delineated in Toolformer, and accessing external APIs through plugins.
Although plugin access remains in limited beta at the time of writing, the initial draft
outlining the creation of a Chat-GPT plugin has been released. The prevailing specification
employs Open-API, or Swagger, which is also utilized by Kosh for their REST APIs. While
this specification may evolve and encompass GraphQL in the future, it is likely to remain the
standard employed by Chat-GPT and other LLMs. This development is highly propitious
for the evolution of Kosh and the integration of knowledge from underrepresented languages
into mainstream LLMs.

7. References
Amundsen, M. (2020). Design and build great web APIs: robust, reliable, and resilient.
The pragmatic programmers. Raleigh, North Carolina: The Pragmatic Bookshelf.

Cologne Digital Sanskrit Dictionaries (2019). Version 2.4.79. Cologne University. Accessed
on April 13, 2023. https://www.sanskrit-lexicon.uni-koeln.de.

Fielding, R.T. (2000). Architectural Styles and the Design of Network-based Software
Architectures. Ph.D. thesis, University of California, Irvine. URL https://www.ics.uci.
edu/~fielding/pubs/dissertation/fielding_dissertation.pdf.

GraphQL (2021). GraphQL Specification. https://spec.graphql.org. Accessed: April 18,
2023.

Grassmann, H.G. (1873). Worterbuch zum Rig-veda. Wiesbaden: O. Harrassowitz. OCLC:
184798352.

Kiss, B., Kölligan, D., Mondaca, F., Neuefeind, C., Reinöhl, U. & Sahle, P. (2019). It Takes
a Village: Co-developing VedaWeb, a Digital Research Platform for Old Indo-Aryan
Texts. In S. Krauwer & D. Fišer (eds.) TwinTalks at DHN 2019 – Understanding
Collaboration in Digital Humanities, volume 2365 of CEUR Workshop Proceedings. URL
http://ceur-ws.org/Vol-2365/05-TwinTalks-DHN2019_paper_5.pdf.

Medjaoui, M., Wilde, E., Mitra, R. & Amundsen, M. (2021). Continuous API Management.
O’Reilly Media, Inc., 2 edition. ISBN: 9781098103521.

Mondaca, F., Esser, M., Neuefeind, C. & Eide, Ø. (2022). MPCD: An API-based Research
Environment. URL https://doi.org/10.5281/zenodo.7839927.

Mondaca, F., Rau, F., Neuefeind, C., Kiss, B., Kölligan, D., Reinöhl, U. & Sahle, P. (2019a).
C-SALT APIs – Connecting and Exposing Heterogeneous Language Resources. URL
https://doi.org/10.5281/zenodo.3265782.

Mondaca, F., Schildkamp, P. & Rau, F. (2019b). Introducing Kosh, a Framework for
Creating and Maintaining APIs for Lexical Data. In Electronic Lexicography in the
21st Century. Proceedings of the eLex 2019 Conference, Sintra, Portugal. Brno: Lexical
Computing CZ, pp. 907–21. URL https://elex.link/elex2019/wp-content/uploads/2019/
09/eLex_2019_51.pdf.

246

https://www.sanskrit-lexicon.uni-koeln.de
https://www.ics.uci.edu/~fielding/pubs/dissertation/fielding_dissertation.pdf
https://www.ics.uci.edu/~fielding/pubs/dissertation/fielding_dissertation.pdf
https://spec.graphql.org
http://ceur-ws.org/Vol-2365/05-TwinTalks-DHN2019_paper_5.pdf
https://doi.org/10.5281/zenodo.7839927
https://doi.org/10.5281/zenodo.3265782
https://elex.link/elex2019/wp-content/uploads/2019/09/eLex_2019_51.pdf
https://elex.link/elex2019/wp-content/uploads/2019/09/eLex_2019_51.pdf


Monier-Williams, M. (1899). A Sanskrit-English dictionary: Etymologically and philologi-
cally arranged with special reference to Cognate indo-european languages. Oxford: The
Clarendon Press.

Měchura, M. (2017). Introducing Lexonomy: an open-source dictionary writing and
publishing system. In Electronic Lexicography in the 21st Century. Proceedings of the
eLex 2017 Conference, Leiden, Netherlands. Leiden: Lexical Computing CZ, p. 18. URL
https://elex.link/elex2017/wp-content/uploads/2017/09/paper41.pdf.

Schick, T., Dwivedi-Yu, J., Dessì, R., Raileanu, R., Lomeli, M., Zettlemoyer, L., Cancedda,
N. & Scialom, T. (2023). Toolformer: Language Models Can Teach Themselves to Use
Tools. URL http://arxiv.org/abs/2302.04761. ArXiv:2302.04761 [cs].

Tasovac, T., Romary, L., Banski, P., Bowers, J., de Does, J., Depuydt, K., Erjavec, T.,
Geyken, A., Herold, A., Hildenbrandt, V., Khemakhem, M., Lehečka, B., Petrović, S.,
Salgado, A. & Witt, A. (2018). TEI Lex-0: A baseline encoding for lexicographic data.
https://dariah-eric.github.io/lexicalresources/pages/TEILex0/TEILex0.html.

TEI Consortium (2023). TEI P5: Guidelines for Electronic Text Encoding and Interchange.
http://www.tei-c.org/Guidelines/P5/. Accessed on 18.04.2023.

247

https://elex.link/elex2017/wp-content/uploads/2017/09/paper41.pdf
http://arxiv.org/abs/2302.04761
https://dariah-eric.github.io/lexicalresources/pages/TEILex0/TEILex0.html
http://www.tei-c.org/Guidelines/P5/

